Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
The application of various resins for the nasal delivery of insulin was examined in rabbits. Intranasal administration of human insulin (28 U, 1 mg) mixed with fractionated sodium polystyrene sulfonate powder (an anionic resin with a particle size of 20-45 microns) caused a rapid increase of the plasma insulin level 413.0 +/- 71.7 microU/ml (mean +/- S.D.) after 15 min, while intranasal administration of insulin alone caused little increase. The blood glucose level decreased from 118.8 +/- 18.5 mg/dl to 65.8 +/- 13.8 mg/dl at 45 min after administration. These results were superior to those obtained with the unfractionated resin. Styrene-divinylbenzene copolymer (a nonionic resin; 20-45 microns fraction) showed similar enhancement of nasal insulin absorption. In contrast, polyacrylester (a nonionic resin; 20-45 microns fraction) and cholestyramine (a cationic resin) did not promote insulin absorption. These results suggest that some resins may be useful for nasal delivery of insulin.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/s0168-3659(97)00193-4 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!