3,6-Diamino-10-methylacridan: uncharged precursor of acriflavine and its unique antimicrobial activity.

J Med Chem

Institute of Applied Radiation Chemistry, Technical University, 90-924 Lodz, Poland, and Chair of Microbiology, Military Medical University, 90-476 Lodz, Poland.

Published: July 1998

Download full-text PDF

Source
http://dx.doi.org/10.1021/jm980149+DOI Listing

Publication Analysis

Top Keywords

36-diamino-10-methylacridan uncharged
4
uncharged precursor
4
precursor acriflavine
4
acriflavine unique
4
unique antimicrobial
4
antimicrobial activity
4
36-diamino-10-methylacridan
1
precursor
1
acriflavine
1
unique
1

Similar Publications

Halorhodospira (Hlr.) halophila strain BN9622 is an extremely halophilic and alkaliphilic purple phototrophic bacterium and has been widely used as a model for exploring the osmoadaptive and photosynthetic strategies employed by phototrophic extreme halophiles that enable them to thrive in hypersaline environments. Here we present the cryo-EM structures of (1) a unique native Hlr.

View Article and Find Full Text PDF

This study focuses on the effect of pre-deformation on hydrogen diffusion and hydrogen embrittlement of the high alloy austenitic TRIP steel X3CrMnNiMo17-8-4. Different cold-rolled steel sheets with thicknesses of ≤400 µm were electrochemically charged on both sides in 0.1 M sodium hydroxide with hydrogen for two weeks.

View Article and Find Full Text PDF

Facile universal strategy of presenting multifunctional short peptides for customizing desired surfaces.

J Nanobiotechnology

January 2025

Department of Spinal Surgery, The First People's Hospital of Wenling, Affiliated Wenling Hospital, Wenzhou Medical University, Taizhou, Zhejiang, 317500, China.

Article Synopsis
  • Interfacial properties of biomaterials influence critical functions like cell adhesion and tissue repair, making their manipulation essential for clinical applications.
  • The study develops a versatile layer-by-layer (LbL) strategy to effectively attach peptides to substrates using polyphenols, enhancing interfacial functionalities.
  • The resulting peptide-polyphenol coatings demonstrate broad applicability, stability, and the ability to incorporate various functional molecules for improved biomaterial performance.
View Article and Find Full Text PDF

Separation of Antibiotics Using Two Commercial Nanofiltration Membranes-Experimental Study and Modelling.

Membranes (Basel)

November 2024

Institute of Environmental and Chemical Engineering, Faculty of Chemical Technology, University of Pardubice, Studentská 573, 532 10 Pardubice, Czech Republic.

The widespread use of antimicrobial drugs has contributed to the increasing trace levels of contaminants in the environment, posing an environmental problem and a challenge to modern-day medicine seeking advanced solutions. Nanofiltration is one such breakthrough solution for the selective removal of antibiotics from wastewater due to their high efficiency, scalability, and versatility. This study examines the separation of antibiotics (sulfamethoxazole (SMX), trimethoprim (TMP), and metformin (MET), respectively) using commercially available membranes with an emphasis on AFC membranes (AFC 30 and AFC 80).

View Article and Find Full Text PDF

Background: Directly observed therapy (DOT) is the standard for monitoring adherence for tuberculosis (TB) treatment. However, the implementation of DOT is difficult for patients and providers due to a lack of financial and human resources. Mounting evidence suggests that emerging digital adherence technologies like video directly observed therapy (VDOT) can serve as an option.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!