In this study the intrinsic thrombogenicity of the extracorporeal circuits and the benefit of heparin-bonded circuits in an extracorporeal life support system without full systemic heparinization and with minimal interference of the so called material-independent factors was tested in four calves. In two circuits (group A) all blood-contacting surfaces were coated with end-point-attached heparin and the other two were non-coated (group B). Under standardized conditions the calves were perfused at a blood flow rate of 2 L/min. After only one bolus injection of heparin (250 IU/kg body weight) before cannulation, plasma heparin activity rapidly decreased in both groups: half life of about 55 minutes. This decrease of the heparin activity was accompanied by a fall of the activated clotting time (ACT) level to baseline values. The experiments using a heparin-coated circuit, had a runtime of more than 360 minutes, whereas the experiments using a non-coated circuit had to be terminated after a runtime of 255 minutes, because massive fibrin formation was noticed in the circuit. This formation was accompanied by a rapid increase in the line pressure, measured just before the inlet of the oxygenator. The macroscopic inspections after terminating the experiments and rinsing the circuit showed a clean circuit in group A. The fibrinopeptide A (FPA) level increased faster during perfusion with the non-coated circuit than in the heparin coated circuit. Lung histopathological examinations of the lungs of the animals in group A showed no fibrin deposition, whereas most of the blood vessels of the lung preparations of the animals in group B were partially or completely occluded with fibrin. These results suggest that heparin-bonding greatly reduces the thrombogenicity of the extracorporeal circuit, and therefore it can reduce the need for systemic heparinization in an extracorporeal life support system.

Download full-text PDF

Source

Publication Analysis

Top Keywords

extracorporeal circuits
8
thrombogenicity extracorporeal
8
extracorporeal life
8
life support
8
support system
8
systemic heparinization
8
heparin activity
8
circuit
8
non-coated circuit
8
animals group
8

Similar Publications

Extracorporeal Membrane Oxygenation (ECMO) is a modality of extracorporeal life support which allows temporary support in cases of cardiopulmonary failure and cardiogenic shock. This study presents a valveless pump that works by the Liebau effect as a possible pumping system in ECMO circuits, replacing the current roller and centrifugal pumps. For this purpose, a mock circulatory loop emulating the haemodynamic of the right part of the heart has been constructed.

View Article and Find Full Text PDF

Background: Contrast-associated acute kidney injury (CA-AKI) is frequent in patients with chronic kidney disease who are submitted to cardiac endovascular procedures using iodinated contrast. In hemoadsorption, cartridges containing styrene-divinylbenzene sorbent resin are applied to remove substances from the blood through an extracorporeal circuit. Importantly, iodinated contrast is also removed via adsorption.

View Article and Find Full Text PDF

We review the case of a 58-year-old female on extracorporeal membrane oxygenation (ECMO) support diagnosed with invasive pulmonary aspergillosis (IPA). Intravenous isavuconazole was started, requiring dose escalation to achieve isavuconazole trough concentration (ISA-Cmin) within the therapeutic range (2.5-5.

View Article and Find Full Text PDF

Quantifying the influence of combined lung and kidney support using a cardiovascular model and sensitivity analysis-informed parameter identification.

Comput Biol Med

January 2025

Department of Cardiovascular Engineering, Institute of Applied Medical Engineering, Medical Faculty, RWTH Aachen University, Forckenbeckstraße 55, 52074, Aachen, Germany.

The combination of extracorporeal membrane oxygenation (ECMO) and continuous renal replacement therapy (CRRT) pose complex hemodynamic challenges in intensive care. In this study, a comprehensive lumped parameter model (LPM) is developed to simulate the cardiovascular system, incorporating ECMO and CRRT circuit dynamics. A parameter identification framework based on global sensitivity analysis (GSA) and multi-start gradient-based optimization was developed and tested on 30 clinical data points from eight veno-arterial ECMO patients.

View Article and Find Full Text PDF

Introduction: Acute kidney injury (AKI) is a common complication of acute respiratory distress syndrome (ARDS) and multiple organ dysfunction syndrome (MODS) in patients receiving extracorporeal membrane oxygenation (ECMO) support, leading to requirement of continuous renal replacement therapy (CRRT) in 70% of ECMO patients. Parallel arrangement of CRRT and ECMO circuits is common in adult patients. However, CRRT may also be integrated directly into the ECMO circuit.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!