Sciatic nerve crush at birth results in the death of most of the motoneurons in the sciatic motor pool. It has been proposed that these cells die through excessive activation which can be explained partly by an increased susceptibility to NMDA. However, it is also possible that decreased inhibitory mechanisms resulting from nerve injury may contribute to overactivation of the motoneurons. In this study we compared the survival of motoneurons innervating two muscles in the peroneal motor pool, tibialis anterior and extensor digitorum longus, after either sciatic or common peroneal nerve crush. These two procedures both axotomize the motoneurons but differ in their effects on afferent input. Sciatic nerve crush severely reduces the afferent input from the antagonist muscles innervated via the tibial nerve, whereas common peroneal nerve crush preserves them. Using retrograde labeling with horseradish peroxidase, we found that almost twice as many motoneurons survived common peroneal nerve crush than sciatic nerve crush and that muscle weight showed a corresponding significant improvement. A control experiment excluded the possible involvement of increased stretch of the muscles as a result of common peroneal nerve crush alone as an explanation for the improvement. We therefore suggest that the increased survival of motoneurons after peroneal nerve crush was due to the preservation of their reciprocal inhibitory input. However, since even with this improvement the majority of motoneurons still died, loss of reciprocal inhibition probably does not play a major role in the death of motoneurons induced by overactivation.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1006/exnr.1998.6820 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!