Several studies have suggested a role for heat shock proteins (hsps) during development and differentiation. However, relatively little is known about the role of hsp70 in controlling human hematopoietic cell differentiation and death. Here, we show that constitutive expression of human inducible 70-kDa heat shock protein (hsp70) promotes differentiation of HL-60 cells and prevents apoptosis that occurred after terminal differentiation or directly by apoptotic agents. After treatment with phorbol 12-myristate 13-acetate (PMA), hsp70-overexpressing cells (HL-60/hsp70) underwent rapid growth arrest and plastic adherence and expressed more CD14 than parental HL-60 or empty vector-transformed cells (HL-60/puro). HL-60/hsp70 cells also rapidly differentiated into granulocytes by addition of all-trans-retinoic acid, as assessed by phenotypic changes after staining with Wright-Giemsa. After differentiation into monocyte/macrophage-like cells or granulocytes, hsp70-overexpressing cells showed little evidence for apoptosis and had a prolonged survival, indicating that the survival-enhancing properties of hsp70 counteract programmed cell death that accompanies terminal differentiation. HL-60/hsp70 cells also showed more resistance than parental cells against apoptotic agents such as sodium nitroprusside, a NO-generating agent, or Taxol, a microtubule stabilizing agent. Further, heat shock of parental HL-60 cells at 42 degrees C for 3 h increased hsp70 levels, promoted plastic adherence (< 6 h) of the cells in respond to PMA, and protected cells from SNP or Taxol. Taken together, these studies demonstrate that hsp70 plays a crucial role in the differentiation of myeloid cells, participating in cell cycle controls and phenotypic changes, with protecting effects on apoptosis induced by different pathways.

Download full-text PDF

Source
http://dx.doi.org/10.1006/cimm.1998.1309DOI Listing

Publication Analysis

Top Keywords

heat shock
16
cells
13
hl-60 cells
12
inducible 70-kda
8
70-kda heat
8
shock protein
8
cell cycle
8
differentiation
8
cell death
8
terminal differentiation
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!