Tyrosine hydroxylase in the european eel (Anguilla anguilla): cDNA cloning, brain distribution, and phylogenetic analysis.

J Neurochem

Laboratoire de Génétique des Processus Neurodégénératifs, CERVI, Hôpital Pitié-Salpêtrière, Gif-sur-Yvette, France.

Published: August 1998

We report the isolation of a full-length eel tyrosine hydroxylase (TH) cDNA that is characterized by a long 3' untranslated region and by a diversity restricted to the 3' end owing to the differential use of three polyadenylation signals. The longest eel TH mRNA was distinctive in the presence of four pentameric elements (AUUUA) in the AU-rich 3' noncoding region. Such a diversity could provide the basis of posttranscriptional or translational regulation of eel TH gene expression. Comparison of the eel TH sequence with those of other aromatic amino acid hydroxylases (TH, tryptophan hydroxylase, and phenylalanine hydroxylase) and phylogenetic analysis confirmed that the N-terminal regulatory domain is highly divergent, contrasting with the conservation of the catalytic core of the enzyme. Molecular phylogenies including the available sequences of the three hydroxylase genes suggested that the duplication of their common ancestor occurred before the emergence of arthropods. The regional expression of the eel TH mRNA was studied by semiquantitative PCR, northern blots, and in situ hybridization and compared with the immunocytochemical localization of TH protein. The data showed that TH mRNA is mostly expressed in the olfactory and hypothalamic areas, whereas sparse TH-expressing cell bodies are present in the telencephalic region and brainstem. No labeling was detected in the mesencephalic area, in striking contrast with that found in amphibians and amniotes.

Download full-text PDF

Source
http://dx.doi.org/10.1046/j.1471-4159.1998.71020460.xDOI Listing

Publication Analysis

Top Keywords

tyrosine hydroxylase
8
phylogenetic analysis
8
region diversity
8
eel mrna
8
eel
6
hydroxylase european
4
european eel
4
eel anguilla
4
anguilla anguilla
4
anguilla cdna
4

Similar Publications

Objective: Progressive Supranuclear Palsy (PSP) is a severe neurodegenerative disease characterized by tangles of hyperphosphorylated tau protein and tufted astrocytes. Developing treatments for PSP is challenging due to the lack of disease models reproducing its key pathological features. This study aimed to model sporadic PSP-Richardson's syndrome (PSP-RS) using multi-donor midbrain organoids (MOs).

View Article and Find Full Text PDF

Age-related dopamine (DA) neuron loss is a primary feature of Parkinson's disease. However, whether similar biological processes occur during healthy aging, but to a lesser degree, remains unclear. We therefore determined whether midbrain DA neurons degenerate during aging in mice and humans.

View Article and Find Full Text PDF

Microbial synthesis of m-tyrosine via whole-cell biocatalysis.

Enzyme Microb Technol

January 2025

Biotechnology Program, Department of Engineering Technology, Cullen College of Engineering, University of Houston, Houston, TX 77004, United States. Electronic address:

Meta-tyrosine (m-tyrosine), a nonproteinogenic amino acid, has shown significant potential for applications as an herbicide in agriculture and for various medical uses. However, the natural abundance of m-tyrosine is very low, limiting its widespread use. In this study, we successfully achieved microbial production of m-tyrosine by establishing the in vivo enzyme activity of phenylalanine 3-hydroxylase (PacX from Streptomyces coeruleoribudus) in E.

View Article and Find Full Text PDF

O-GlcNAcylation is a post-translational modification characterized by the covalent attachment of a single moiety of GlcNAc on serine/threonine residues in proteins. Tyrosine hydroxylase (TH), the rate-limiting step enzyme in the catecholamine synthesis pathway and responsible for production of the dopamine precursor, L-DOPA, has its activity regulated by phosphorylation. Here, we show an inverse feedback mechanism between O-GlcNAcylation and phosphorylation of TH at serine 40 (TH pSer40).

View Article and Find Full Text PDF

Traumatic brain injury (TBI) is identified as a risk factor for Parkinson's disease (PD), which is a neurodegenerative disease characterized by the loss of dopaminergic neurons in the substantia nigra (SN). However, the precise mechanism by which chronic TBI initiates PD pathogenesis is not yet fully understood. In our present study, we assessed the chronic progression and pathogenesis of PD-like behavior at different intervals in TBI mice.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!