The plasma membrane H(+)-ATPase in higher plants has been implicated in nutrient uptake, phloem loading, elongation growth and establishment of turgor. Although a C-terminal regulatory domain has been identified, little is known about the physiological factors involved in controlling the activity of the enzyme. To identify components which play a role in the regulation of the plant H(+)-ATPase, a fusicoccin responsive yeast expressing Arabidopsis plasma membrane H(+)-ATPase AHA2 was employed. By testing the fusicoccin binding activity of yeast membranes, the C-terminal regulatory domain of AHA2 was found to be part of a functional fusicoccin receptor, a component of which was the 14-3-3 protein. ATP hydrolytic activity of AHA2 expressed in yeast internal membranes was activated by all tested isoforms of the 14-3-3 protein of yeast and Arabidopsis, but only in the presence of fusicoccin, and activation was prevented by a phosphoserine peptide representing a known 14-3-3 protein binding motif in Raf-1. The results demonstrate that the 14-3-3 protein is an activator molecule of the H(+)-ATPase and provides the first evidence of a protein involved in activation of plant plasma membrane H(+)-ATPase.

Download full-text PDF

Source
http://dx.doi.org/10.1046/j.1365-313x.1998.00083.xDOI Listing

Publication Analysis

Top Keywords

plasma membrane
16
membrane h+-atpase
16
14-3-3 protein
16
plant plasma
8
fusicoccin binding
8
fusicoccin responsive
8
c-terminal regulatory
8
regulatory domain
8
h+-atpase
6
fusicoccin
6

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!