Elevated trace element concentrations in southern toads, Bufo terrestris, exposed to coal combustion waste.

Arch Environ Contam Toxicol

Auburn University, Department of Zoology and Wildlife Science, Alabama 36849, USA.

Published: August 1998

A number of recent studies have linked developmental, physiological, and behavioral abnormalities in amphibians to coal combustion wastes (coal ash). Few studies, however, have determined trace element concentrations in amphibians exposed to coal ash. In the current study we compare total body concentrations of 20 trace elements in adult southern toads, Bufo terrestris, inhabiting coal ash settling basins with toads that were not exposed to the combustion wastes (reference). In addition, we document the accumulation of trace elements in toads transplanted from reference sites to field enclosures in an ash settling basin for 7 and 12 weeks. Arsenic, selenium, and vanadium levels were significantly elevated in toads captured at the ash-contaminated site in comparison to toads from the reference site. All three of these elements were also significantly elevated in toads exposed to the contaminated habitat for only 7 weeks. Our study suggests that adult anurans can bioaccumulate particularly high levels of selenium and may be useful bioindicators in agricultural and coal ash-impacted habitats.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s002449900383DOI Listing

Publication Analysis

Top Keywords

coal ash
12
trace element
8
element concentrations
8
southern toads
8
toads bufo
8
bufo terrestris
8
exposed coal
8
coal combustion
8
combustion wastes
8
trace elements
8

Similar Publications

Enhancement of Zn adsorption on coal fly ash-based geopolymer with steel slag incorporation: leaching behavior and performance insights.

Environ Pollut

January 2025

Key Laboratory of Groundwater Resources and Environment, Ministry of Education, Jilin Provincial Key Laboratory of Water Resources and Environment, College of New Energy and Environment, Jilin University, Changchun 130012, China; Jilin Provincial Key Laboratory of Water Resources and Environment, Jilin University, Changchun, Jilin, China 130021.

Industrial solid wastes like coal fly ash (CFA) and steel slag pose environmental challenges, while the remediation of heavy metal-contaminated water remains a global priority. This study investigates the impact of incorporating steel slag during the synthesis of CFA-based geopolymers (CFAG) on the leaching characteristics of inherent heavy metals in CFA and the Zn adsorption performance of CFAG. Leaching experiments show geopolymerization effectively immobilizes heavy metals including Fe, Cr, As, Cd, and Ti in CFA while having little effect on Mn, V, and Ni.

View Article and Find Full Text PDF

Construction materials are significantly exposed to ecological hazards due to the presence of hazardous chemical constituents found in industrial and agricultural solid wastes. This study aims to investigate the use of sawdust particles (SDPs) and sawdust wastewater (SDW) in alkali-activated composites (AACs) made from a mixture of different silicon-aluminum-based solid wastes (slag powder-SP, red mud-RM, fly ash-FA, and carbide slag-CS). The study examines the impact of SDP content, treated duration of SDPs, and SDW content on both fresh and hardened properties of the AACs, including electrical conductivity, fluidity, density, flexural and compressive strengths, and drying shrinkage.

View Article and Find Full Text PDF

TiO-ZnO functionalized low-cost ceramic membranes from coal fly ash for the removal of tetracycline from water under visible light.

Discov Nano

January 2025

Materials Science Innovation and Modelling (MaSIM) Research Focus Area, Faculty of Natural and Agricultural Sciences, North-West University, Mafikeng Campus, Private Bag X2046, Mmabatho, 2735, South Africa.

Hybrid wastewater treatment systems offer viable solutions to enhance the removal of complicated contaminants from aqueous system. This innovation has opened new avenues for advanced wastewater treatment processes. Herein, a novel TiO-ZnO functionalized coal fly ash-based ceramic membrane was fabricated by utilizing a combined pressing and sintering method.

View Article and Find Full Text PDF

The study aimed to explore the potential use of coal-fired power plant bottom ashes in Pleurotus ostreatus cultivation using spent coffee grounds. The study analyzed five compositions of growth substrate for mushrooms: pure coffee grounds (I) as a control sample; coffee grounds substrate with the addition of 1% (II); 5% (III); 10% (IV) bottom ash; and bottom ash alone (V). The study revealed that compared to the control sample (I), the addition of 1% bottom ash (II) did not affect the time of mycelium growth but slowed fruiting body growth by 4 days.

View Article and Find Full Text PDF

Effects of Nanosilica on the Properties of Ultrafine Cement-Fly Ash Composite Cement Materials.

Nanomaterials (Basel)

December 2024

School of Civil Engineering and Architecture, Henan University, Kaifeng 475000, China.

The increasing incidence of structural failures, such as cracks and collapses, in rock masses within mines, tunnels, and other civil engineering environments has attracted considerable attention among scholars in recent years. Grouting serves as a principal solution to these issues. The Renlou Coal Mine in the Anhui Province is used as a case study to evaluate the effectiveness of nanosilica (NS) as an additive in ultrafine cement (UC), introducing a novel grouting material for practical applications.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!