Complexation Behavior of Polyampholytes and Charged Objects.

Macromolecules

Institut Charles Sadron, 6 rue Boussingault, 67083 Strasbourg, France Max-Planck-Institut für Kolloid- und Grenzflächenforschung, Kantstrasse 55, 14513 Teltow, Germany.

Published: July 1998

We study theoretically the interaction of a polyampholyte chain with charged planes, cylinders, and spheres. Due to the random character of the charge distribution along the chain, a polyampholyte possesses a spontaneous dipole moment, which can interact favorably with charged objects. Depending on the charge strength of the object and the polyampholyte length and fraction of charged monomers, this attractive interaction can be strong enough to induce adsorption. The addition of salt weakens the trend to adsorption, but proves necessary to adsorb polyampholytes of the same net charge as the charged object in the case of planes and cylinders. Long polyampholytes form globules, for which the number of uncompensated charges and thus the spontaneous dipole moment is reduced. Nevertheless, globules can adsorb on charged objects via two pathways: they either adsorb as a whole, (intact globule), or they are dissolved into a coil state prior to adsorption. Applications to the complexation behavior of polyampholytes with stiff, rodlike polyelectrolytes and with charged microspheres or charged spherical micelles are given.

Download full-text PDF

Source
http://dx.doi.org/10.1021/ma980115bDOI Listing

Publication Analysis

Top Keywords

charged objects
12
complexation behavior
8
behavior polyampholytes
8
charged
8
planes cylinders
8
spontaneous dipole
8
dipole moment
8
polyampholytes
4
polyampholytes charged
4
objects study
4

Similar Publications

The Role of Light Irradiation and Dendrimer Generation in Directing Electrostatic Self-Assembly.

Polymers (Basel)

January 2025

Department of Chemistry and Pharmacy, Interdisciplinary Center for Molecular Materials, Friedrich-Alexander Universität Erlangen-Nürnberg, Egerlandstr. 3, 91058 Erlangen, Germany.

pH-responsive polyamidoamine (PAMAM) dendrimers are used as well-defined building blocks to design light-switchable nano-assemblies in solution. The complex interplay between the photoresponsive di-anionic azo dye Acid Yellow 38 (AY38) and the cationic PAMAM dendrimers of different generations is presented in this study. Electrostatic self-assembly involving secondary dipole-dipole interactions provides well-defined assemblies within a broad size range (10 nm-1 μm) with various shapes.

View Article and Find Full Text PDF

Mechanoluminescent (ML) materials emit light by trapping and releasing charge carriers under mechanical stress. However, previous studies do not fully reveal the relationship between emitting light intensity and mechanical stress, thereby affecting the accuracy of stress measurement. This study addresses this gap by systematically investigating ML cylinders with various sizes and loading paths using theoretical analysis and simulations, focusing on the maximum contact stress, equivalent stress distribution, and the relationship between the strain energy density and light intensity at the point of maximum contact stress.

View Article and Find Full Text PDF

Food safety is gaining increasing attention worldwide. Currently, low-density organic foreign objects such as insects are extremely challenging to detect using conventional metal detectors and X-ray inspection systems. This study aimed to develop a visible-near-infrared single-pixel imaging (Vis-NIR-SPI) method to detect small insects inside food.

View Article and Find Full Text PDF

Peptides can be designed to self-assemble into predefined supramolecular nanostructures, which are then employed as biomaterials in a range of applications, including tissue engineering, drug delivery, and vaccination. However, current self-assembling peptide (SAP) hydrogels exhibit inadequate self-healing capacities and necessitate the use of sophisticated printing apparatus, rendering them unsuitable for 3D printing under physiological conditions. Here, we report a precisely designed charged peptide, Z5, with the object of investigating the impact of electrostatic interactions on the self-assembly and the rheological properties of the resulting hydrogels.

View Article and Find Full Text PDF

Transmission electron microscopy, especially at cryogenic temperature, is largely used for studying biological macromolecular complexes. A main difficulty of TEM imaging of biological samples is the weak amplitude contrasts due to electron diffusion on light elements that compose biological organisms. Achieving high-resolution reconstructions implies therefore the acquisition of a huge number of TEM micrographs followed by a time-consuming image analysis.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!