Pseudomonas aeruginosa is a prolific exporter of virulence factors and contains three of the four protein secretion systems that have been described in gram-negative bacteria. The P. aeruginosa type II general secretory pathway (GSP) is used to export the largest number of proteins from this organism, including lipase, phospholipase C, alkaline phosphatase, exotoxin A, elastase and LasA. Although these exoproteins contain no sequence similarity, they are specifically and efficiently transported by the secretion apparatus. Bacterial homologues of XcpQ (GspD), the only outer membrane component of this system, have been proposed to play the role of gatekeeper, by presumably interacting and recognizing the exported substrates to allow their passage through the outer membrane. While determining the phenotype of nonpolar deletions in each of the xcp genes, we have shown that a deletion of the P. aeruginosa strain K xcpQ does not completely abolish protein secretion. As the proposed function of XcpQ should be requisite for secretion, we searched for additional factors that could carry out this role. A cosmid DNA library from a PAK strain deleted for xcpP-Z was tested for its ability to increase protein secretion by screening for enhanced growth on lipid agar, a medium that selects for the secretion of lipase. In this manner, we have identified an XcpQ homologue, XqhA, that is solely responsible for the residual export observed in a deltaxcpQ strain, although it is not required for efficient secretion in wild-type P. aeruginosa. We have also demonstrated that this protein is capable of recognizing all of the exoproteins of P. aeruginosa, arguing against the proposed role of members of the secretin family as determinants of specificity.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1046/j.1365-2958.1998.00888.x | DOI Listing |
Background: Alzheimer's disease (AD) is the most common cause of dementia worldwide. It is characterized by dysfunction in the U1 small nuclear ribonucleoproteins (snRNPs) complex, which may precede TAU aggregation, enhancing premature polyadenylation, spliceosome dysfunction, and causing cell cycle reentry and death. Thus, we evaluated the effects of a synthetic single-stranded cDNA, called APT20TTMG, in induced pluripotent stem cells (iPSC) derived neurons from healthy and AD donors and in the Senescence Accelerated Mouse-Prone 8 (SAMP8) model.
View Article and Find Full Text PDFAlzheimers Dement
December 2024
Indiana University School of Medicine, Indianapolis, IN, USA.
Background: The TREAT-AD centers aim to improve Alzheimer's Disease (AD) research by offering free, high-quality tools and technologies. Lyn is a tyrosine kinase that belongs to the Src family kinases. The expression of Lyn and its activity have been implicated in AD.
View Article and Find Full Text PDFBackground: TAR-DNA-binding protein 43 (TDP43), is a pathologic marker in neurodegenerative diseases including frontotemporal lobar degeneration and amyotrophic lateral sclerosis. The aggregation of TDP-43, a crucial RNA-binding protein, is a consequence of post-translational modifications (PTMs) that disrupt its normal function. PTMs such as phosphorylation and ubiquitination contribute to the aberrant accumulation of TDP-43 aggregates, leading to neurodegenerative disorders like amyotrophic lateral sclerosis (ALS) and frontotemporal lobar degeneration (FTLD).
View Article and Find Full Text PDFBackground: Homozygosity for the rare APOE3-Christchurch (APOE3Ch) variant, encoding for apoE3-R136S (apoE3-Ch), was linked to resistance against an aggressive form of familial Alzheimer's disease (AD). Carrying two copies of APOE3Ch was sufficient to delay autosomal AD onset by 30 years. This remarkable protective effect makes it a strong candidate for uncovering new therapies against AD.
View Article and Find Full Text PDFAlzheimers Dement
December 2024
Good T Cells, Seoul, Mapo-gu, Korea, Republic of (South); YONSEI University, Seoul, Seodaemun-gu, Korea, Republic of (South).
Background: Neurodegenerative diseases, including Alzheimer's disease (AD), have been long thought to be independent of the peripheral immune system, but their pathogenesis status is functionally influenced by various T cell subsets in the periphery. Especially Treg cells are emerging as an important dynamic population in the brain, but the detailed immunological molecular and cellular processes are poorly characterized METHOD: We reported that the cell surface protein Lrig1 is enriched in Treg cells and is an essential regulator of the functions of Treg cells in vitro and in vivo. To evaluate the functional importance of Treg cells in AD pathogenesis, the modulating mAb specific to Lrig1 (GTC 310-01) via intravenous injection route was administered into 5xFAD or 6xTg mice, the genetic mouse model of AD, and the various AD symptoms were investigated.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!