AI Article Synopsis

  • A new electrophysiologic mapping technique helps identify the central sulcus and abnormal cortical regions in patients with tumors or epilepsy.
  • Electrocorticographic recordings from 25 patients showed that low coherence was found across the central sulcus, confirming its location in 11 out of 12 cases analyzed.
  • The technique also identified tumor locations in the sensory-motor region effectively and noted high coherence areas in epilepsy patients, though these did not correlate with mesial temporal lobe tumors or inter-ictal spiking.

Article Abstract

An electrophysiologic mapping technique which enables identification of the central sulcus and pathologic cortical regions is described. Electrocorticographic recordings of 1 min duration were recorded from 25 patients who were undergoing resection of tumors in the sensory-motor region or being evaluated for temporal lobectomy for epilepsy. Analysis of the patterns of subdural inter-electrode coherence revealed low coherence across the central sulcus for 11/12 cases where its location could be verified with direct cortical stimulation and/or somatosensory evoked potential mapping. Regions of high coherence identified the location of tumors in the sensory-motor region for 10/10 cases. Over the temporal lobe, localized areas of high coherence were evident in 8/9 epilepsy patients, but were not indicative of the location of mesial temporal lobe tumors or inter-ictal spiking, when present. We conclude that analysis of cortical coherence patterns may be helpful for revealing the location of pathologic processes relative to critical cortical areas.

Download full-text PDF

Source
http://dx.doi.org/10.1016/s0013-4694(97)00082-5DOI Listing

Publication Analysis

Top Keywords

central sulcus
8
tumors sensory-motor
8
sensory-motor region
8
high coherence
8
temporal lobe
8
coherence
6
identification sensory/motor
4
sensory/motor area
4
area pathologic
4
pathologic regions
4

Similar Publications

Localization of function within the brain and central nervous system is an essential aspect of clinical neuroscience. Classical descriptions of functional neuroanatomy provide a foundation for understanding the functional significance of identifiable anatomic structures. However, individuals exhibit substantial variation, particularly in the presence of disorders that alter tissue structure or impact function.

View Article and Find Full Text PDF

The somato-cognitive action network (SCAN) consists of three nodes interspersed within Penfield's motor effector regions. The configuration of the somato-cognitive action network nodes resembles the one of the 'plis de passage' of the central sulcus: small gyri bridging the precentral and postcentral gyri. Thus, we hypothesize that these may provide a structural substrate of the somato-cognitive action network.

View Article and Find Full Text PDF

Obstructive sleep apnea and structural and functional brain alterations: a brain-wide investigation from clinical association to genetic causality.

BMC Med

January 2025

Sleep Medicine Center, State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, National Center for Respiratory Medicine, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, NO.28 Qiaozhong Mid Road, Guangzhou, Guangdong, 510160, China.

Background: Obstructive sleep apnea (OSA) is linked to brain alterations, but the specific regions affected and the causal associations between these changes remain unclear.

Methods: We studied 20 pairs of age-, sex-, BMI-, and education- matched OSA patients and healthy controls using multimodal magnetic resonance imaging (MRI) from August 2019 to February 2020. Additionally, large-scale Mendelian randomization analyses were performed using genome-wide association study (GWAS) data on OSA and 3935 brain imaging-derived phenotypes (IDPs), assessed in up to 33,224 individuals between December 2023 and March 2024, to explore potential genetic causality between OSA and alterations in whole brain structure and function.

View Article and Find Full Text PDF

This study involved 72 volunteers divided into two groups according to the apnea-hypopnea index (AHI): AHI>15 episodes per hour (ep/h) (main group, n=39, including 28 men, median AHI 44.15, median age 47), 0≤AHI≤15ep/h (control group, n=33, including 12 men, median AHI 2, median age 28). Each participant underwent polysomnography with a recording of 19 EEG channels.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!