Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Background & Aims: Galanin, a 29-amino acid neuropeptide found in the gastric mucosa, inhibits basal and pentagastrin-stimulated acid secretion. Its cellular target is unknown. The aim of this study was to determine whether galanin inhibits Ca2+ signaling and histamine release in enterochromaffin-like (ECL) cells.
Methods: Isolated rat ECL cells were purified to 85% homogeneity by a combination of elutriation, density gradient centrifugation, and 48-hour culture. Intracellular calcium concentration ([Ca2+]i) was determined using video imaging with Fura-2 in a 37 degreesC superfusion chamber. Histamine was measured by radioimmunoassay.
Results: Reverse-transciption polymerase chain reaction of the ECL cell RNA showed a galanin type I receptor subtype. Galanin inhibited gastrin, Bay K8644, and K+ depolarization-induced calcium mobilization and entry as well as reduced basal calcium levels. Pretreatment with pertussis toxin decreased the effect of galanin. Galanin inhibited basal and gastrin-stimulated histamine release by approximately 60% with a median effective concentration of 1.10(-10) mol/L. The inhibitory actions of galanin on histamine release and Ca2+ influx could be reduced by a galanin antagonist, galantide.
Conclusions: Galanin's inhibition of acid secretion can be explained in part by inhibition of calcium signaling and histamine release from the ECL cells due to activation of a Gi,o protein-coupled receptor.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/s0016-5085(98)70199-4 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!