Coronary dysfunctions identified in the presence of chronic heart failure are an important pathophysiologic abnormality that influences the prognosis of the disease. Because the endothelin pathway plays a significant role in the increased peripheral vascular tone associated with heart failure, we hypothesized that the endothelin pathway may be involved in the abnormal coronary vasomotion associated with this pathologic condition. Experiments were carried out in failing hearts (UM-X7.1 cardiomyopathic hamsters, aged 225-250 days) and normal hearts (Syrian LVG hamsters, also aged 225-250 days). Isolated hearts were perfused at constant flow and exposed to the blocker of the generation of endothelin-1 (ET-1), phosphoramidon (10 microM infusion), as well as to the selective ET(A)-receptor antagonist BQ 123 (10 microM infusion) and to a selective ET(B)-receptor antagonist BQ 788 (1 microM infusion). Coronary and cardiac effects of exogenous ET-1 (0.01-100 pmol) were also studied. Phosphoramidon, BQ 788, and BQ 123 did not altered coronary perfusion pressure either in normal or in failing hearts, whereas cardiac contractility was significantly impaired in the presence of phosphoramidon and BQ 123. Coronary sensitivity to exogenous ET-1 did not demonstrate a significant difference between normal and failing hearts [median effective concentration (EC50), 7 pmol in failing hearts vs. 12 pmol in normal hearts; p = NS]. In the presence of exogenous ET-1, cardiac contractility was significantly increased in both groups. In normal hearts, the exogenous ET-1-induced increase in coronary perfusion pressure was completely antagonized by BQ 123, whereas combined administration of BQ 788 and BQ 123 was necessary to induce complete inhibition in failing hearts. The positive inotropic effect elicited by exogenous ET-1 (EC50) was completely abolished in the presence of BQ 123, whereas BQ 788 had no significant effect. Results indicate that the endothelin pathway does not play a significant role in the altered coronary vasomotion observed in this model of chronic heart failure. On the contrary, the endothelin pathway appears to participate in the maintenance of myocardial contractility. According to these observations, administration of an inhibitor of ET-1 synthesis, as well as the use of an ET(A)-receptor antagonist, may be contraindicated in the presence of poor left ventricular function because the endothelin pathway contributes significantly to the maintenance of cardiac contractility.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1097/00005344-199807000-00003 | DOI Listing |
J Mol Cell Cardiol Plus
March 2024
Institute of Experimental Pharmacology and Toxicology, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246 Hamburg, Germany.
Sacubitril/valsartan (Sac/Val) belongs to the group of angiotensin receptor-neprilysin inhibitors and has been used for the treatment of heart failure (HF) for several years. The mechanisms that mediate the beneficial effects of Sac/Val are not yet fully understood. In this study we investigated whether Sac/Val influences the two proteolytic systems, the ubiquitin-proteasome system (UPS) and the autophagy-lysosomal pathway (ALP), in a mouse model of pressure overload induced by transverse aortic constriction (TAC) and in human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) treated with endothelin-1 (ET1) serving as a human cellular model of hypertrophy.
View Article and Find Full Text PDFFundam Clin Pharmacol
February 2025
Department of Pharmacology and Toxicology, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, 62514, Egypt.
Drug repurposing of well-established drugs to be targeted against lung cancer has been a promising strategy. Bosentan is an endothelin 1 (ET-1) blocker widely used in pulmonary hypertension. The current experiment intends to inspect the anticancer and antiangiogenic mechanism of bosentan targeting epidermal growth factor receptor (EGFR) /extra-cellular Signal Regulated Kinase (ERK) /c-Jun/vascular endothelial growth factor (VEGF) carcinogenic pathway.
View Article and Find Full Text PDFMol Cell Endocrinol
January 2025
Department of Urology, People's Hospital of Xinjiang Uygur Autonomous Region, Urumqi, Xinjiang Uygur Autonomous Region, 830001, China. Electronic address:
Prostate cancer (PCa) is the most prevalent cancer in men and the leading cause of cancer-related mortality. Recent studies have highlighted the pivotal role of glycolysis in tumor progression. This study aimed to investigate the involvement of the EDNRB gene and its ligand endothelin 3 (EDN3) in glycolysis in PCa and to elucidate its underlying molecular mechanism.
View Article and Find Full Text PDFFront Nephrol
December 2024
Renal Pathophysiology Laboratory, Hospital das Clínicas, University of São Paulo School of Medicine, São Paulo, Brazil.
In glomerulopathies, endothelial dysfunction and the presence of histological vascular lesions such as thrombotic microangiopathy, arteriolar hyalinosis, and arteriosclerosis are related to a severe clinical course and worse renal prognosis. The endothelial cell, which naturally has anti-inflammatory and anti-thrombotic regulatory mechanisms, is particularly susceptible to damage caused by various etiologies and can become dysfunctional due to direct/indirect injury or a deficiency of protective factors. In addition, endothelial regulation and protection involve participation of the complement system, factors related to angiogenesis, the renin-angiotensin system (RAS), endothelin, the glycocalyx, the coagulation cascade, interaction between these pathways, interactions between glomerular structures (the endothelium, mesangium, podocyte, and basement membrane) and interstitial structures (tubules, arterioles and small vessels).
View Article and Find Full Text PDFBrain Sci
December 2024
Department of Anatomy and Neurobiology, University of Tennessee Health Science Center, Memphis, TN 38163, USA.
Astrocytes, vital support cells in the central nervous system (CNS), are crucial for maintaining neuronal health. In neurodegenerative diseases such as Alzheimer's disease (AD), astrocytes play a key role in clearing toxic amyloid-β (Aβ) peptides. Aβ, a potent neuroinflammatory trigger, stimulates astrocytes to release excessive glutamate and inflammatory factors, exacerbating neuronal dysfunction and death.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!