Occupational respiratory diseases have been reported following exposure to metal working fluids. We report a spectrum of respiratory illnesses occurring in an outbreak in 30 workers of an automobile parts engine manufacturing plant. Workers presented with respiratory complaints and, after clinical and laboratory evaluations, were classified as those having hypersensitivity pneumonitis, occupational asthma, or industrial bronchitis, or those without occupational lung disease. Hypersensitivity pneumonitis affected seven workers, with six exhibiting serum precipitins to Acinetobacter Iwoffii. Occupational asthma and industrial bronchitis affected 12 and six workers, respectively. Oil-mist exposures were below current recommendations. Gram-negative bacteria, but no fungi, Thermophiles, or Legionella, were identified. Although specific agents responsible for each individual case could not be identified, probably both specific sensitizing agents and non-specific irritants from metal working fluids, additives, or contaminants contributed to this spectrum of occupational respiratory illness.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1097/00043764-199807000-00010 | DOI Listing |
ISME J
January 2025
Department of Plant Pathology, University of Georgia, Athens, GA, United States.
Pantoea agglomerans is one of four Pantoea species reported in the USA to cause bacterial rot of onion bulbs. However, not all P. agglomerans strains are pathogenic to onion.
View Article and Find Full Text PDFNanoscale
January 2025
Chongqing Key Laboratory of Inorganic Functional Materials, College of Chemistry, Chongqing Normal University, Chongqing, 401331, PR China.
The development of environmentally friendly, high-efficiency, stable, earth-abundant and non-precious metal-based electrocatalysts with fast kinetics and low overpotential for oxygen evolution reaction (OER) and hydrogen evolution reaction (HER) is of exceeding significance but still challenging. Herein, a bifunctional electrode of unique hierarchical NiFe-LDH/Ni/NiCoS/NF (NiFe-LDH = nickel-iron layered double hydroxide and NF = nickel foam) electrocatalytic architecture, which is built up from NiFe-LDH nanosheets, Ni nanoparticles and NiCoS nanoneedles sequentially arrayed on a porous NF substrate, has been prepared by a facile hydrothermal and electrodeposition method. This electrocatalytic architecture is binder-free and its outer NiFe-LDH nanosheets can effectively prevent the oxidation of inner Ni nanoparticles and corrosion of NiCoS nanoneedles during water electrolysis.
View Article and Find Full Text PDFWater Sci Technol
January 2025
Center for Sustainable Development, College of Arts and Sciences, Qatar University, Doha 2713, Qatar.
This work focused on the biotreatment of wastewater and contaminated soil in a used oil recycling plant located in Bizerte. A continuous stirred tank reactor (CSTR) and a trickling filter (TF) were used to treat stripped and collected wastewater, respectively. The CSTR was started up and stabilized for 90 days.
View Article and Find Full Text PDFACS Nano
January 2025
Department of Mechanical Engineering, Stanford University, Stanford, California 94305, United States.
High-entropy metal oxides (HEOs) have recently received growing attention for broad energy conversion and storage applications due to their tunable properties. HEOs typically involve the combination of multiple metal cations in a single oxide lattice, thus bringing distinctive structures, controllable elemental composition, and tunable functional properties. Many synthesis methods for HEOs have been reported, such as solid-state reactions and carbon thermal shock methods.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
Division of Micro and Nanosystems, KTH Royal Institute of Technology, Malvinas väg 10, Stockholm 100 44, Sweden.
Solid-state nanopores offer unique possibilities for biomolecule sensing; however, scalable production of sub-5 nm pores with precise diameter control remains a manufacturing challenge. In this work, we developed a scalable method to fabricate sub-5 nm nanopores in silicon (Si) nanomembranes through metal-assisted chemical etching (MACE) using gold nanoparticles. Notably, we present a previously unreported self-limiting effect that enables sub-5 nm nanopore formation from both 10 and 40 nm nanoparticles in the 12 nm thick monocrystalline device layer of a silicon-on-insulator substrate.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!