In the present study, functional magnetic resonance imaging (fMRI) was used to examine pain perception in humans. Three types of noxious stimuli were presented: electric shock (20.8 mA, 2 Hz), heat (48 degrees C), and mechanical, as well as a control tactile stimulus. The significance of activation at the level of the voxel was determined using correlation analysis. Significant region of interest (ROI) activation was determined by comparing the percentage of active voxels in each ROI to activation in a control ROI in the visual cortex. In response to tactile and shock stimuli, consistent activation was seen in the postcentral gyrus, parietal operculum, and ipsilateral cerebellar cortex. No significant cortical activation was detected in response to noxious heat or mechanical stimulation when compared to nonpainful intensity levels. The data did not indicate adaptation, although further study in this area is necessary. Stationary noxious thermal and mechanical stimulation are "pure" noxious stimuli, while electrical stimulation influenced nociceptive and nonnociceptive receptors. Lack of detectable activation in response to pure noxious stimuli supports the idea that nociceptive and nonnociceptive fibers are interspersed in the somatosensory cortex. Conflicting results from recent functional imaging studies of pain perception regarding cortical activation indicate that it is essential to consider both the tactile and nociceptive components of the stimuli used, the spatial extent of stimulation, and the possibility of adaptation to the response. Furthermore, these results suggest that subtractive or correlative methods may not be sufficiently sensitive to image the activity of nociceptive cells, which are sparsely distributed throughout the somatosensory cortex.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6873382PMC
http://dx.doi.org/10.1002/(SICI)1097-0193(1998)6:3<150::AID-HBM4>3.0.CO;2-2DOI Listing

Publication Analysis

Top Keywords

somatosensory cortex
12
noxious stimuli
12
response noxious
8
noxious thermal
8
thermal mechanical
8
functional magnetic
8
magnetic resonance
8
resonance imaging
8
pain perception
8
roi activation
8

Similar Publications

Learning alters cortical representations and improves perception. Apical tuft dendrites in cortical layer 1, which are unique in their connectivity and biophysical properties, may be a key site of learning-induced plasticity. We used both two-photon and SCAPE microscopy to longitudinally track tuft-wide calcium spikes in apical dendrites of layer 5 pyramidal neurons in barrel cortex as mice learned a tactile behavior.

View Article and Find Full Text PDF

Functional Regrowth of Norepinephrine Axons in the Adult Mouse Brain Following Injury.

eNeuro

December 2024

Solomon H. Snyder Department of Neuroscience, The Johns Hopkins University School of Medicine, 725 North Wolfe Street, Baltimore, MD 21205, USA.

It is widely believed that axons in the central nervous system of adult mammals do not regrow following injury. This failure is thought, at least in part, to underlie the limited recovery of function following injury to the brain or spinal cord. Some studies of fixed tissue have suggested that, counter to dogma, norepinephrine (NE) axons regrow following brain injury.

View Article and Find Full Text PDF

Spike-wave-discharges (SWD) are the electrophysiological hallmark of absence epilepsy. SWD are generated in the thalamo-cortical network and a seizure onset zone was identified in the somatosensory cortex (S1). We have shown before that inhibition of the centromedian thalamic nucleus (CM) in GAERS rats resulted in a selective suppression of the spike component while rhythmic cortical 5-9 Hz oscillations remained present.

View Article and Find Full Text PDF

Intracortical microstimulation (ICMS) is a method for restoring sensation to people with paralysis as part of a bidirectional brain-computer interface (BCI) to restore upper limb function. Evoking tactile sensations of the hand through ICMS requires precise targeting of implanted electrodes. Here we describe the presurgical imaging procedures used to generate functional maps of the hand area of the somatosensory cortex and subsequent planning that guided the implantation of intracortical microelectrode arrays.

View Article and Find Full Text PDF

The gut microbiota emerged as a potential modulator of brain connectivity in health and disease. This systematic review details current evidence on the gut-brain axis and its influence on brain connectivity. The initial set of studies included 532 papers, updated to January 2024.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!