The regulation of macrophage lipoprotein lipase (LPL) secretion and mRNA expression by atherogenic lipoproteins is of critical relevance to foam cell formation. LPL is present in arterial lesions and constitutes a bridging ligand between lipoproteins, proteoglycans, and cell receptors, thus favoring macrophage lipoprotein uptake and lipid accumulation. We investigated the effects of native and of oxidized lipoproteins on the expression of LPL in an in vitro human monocyte-macrophage system. Exposure of mature macrophages (day 12) to highly copper-oxidized human low density lipoprotein (LDL) (100 microg protein per milliliter) led to marked reduction in the expression of LPL activity (-62%, P<0.01) and mRNA level (-47%, P<0.05); native LDL, acetylated LDL, and LDL oxidized for <6 hours were without effect. The reduction in LPL activity became significant at a threshold of 6 hours of LDL oxidation (-31%, P<0.05). Among the biologically active sterols formed during LDL oxidation, only 7beta-hydroxycholesterol (5 microg/mL) induced a minor reduction in macrophage LPL activity, whereas 25-hydroxycholesterol was without effect. By contrast, lysophosphatidylcholine, whose LDL content increased in parallel with the degree of oxidation, induced significant reductions in LPL activity and mRNA levels at concentrations of 2 to 20 micromol/L (-34% to -53%, P<0.01). Our results demonstrate that highly oxidized LDL (>6-hour oxidation) exerts negative feedback on LPL secretion in human monocytes-macrophages via a reduction in mRNA levels. By contrast, native LDL and mildly oxidized LDL (<6-hour oxidation) did not exert a feedback effect on LPL expression. We speculate that the content of lysophosphatidylcholine and, to a lesser degree, of 7beta-hydroxycholesterol in oxidized LDLs is responsible for the downregulation of LPL activity and mRNA abundance in human monocyte-derived macrophages and may therefore modulate LPL-mediated pathways of lipoprotein uptake during conversion of macrophages to foam cells.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1161/01.atv.18.7.1172 | DOI Listing |
Arch Biochem Biophys
January 2025
Department of Cardiology, Zhongnan Hospital of Wuhan University, No 169 Donghu Road, Wuchang District, Wuhan 430071, Hubei Province, China. Electronic address:
Background: Astaxanthin (ASX), a fat-soluble carotenoid mainly sourced from Haematococcus pluvialis, shows promise for clinical applications in chronic inflammatory diseases. This study investigates whether ASX can mitigate atherosclerosis (AS) by modulating macrophage ferroptosis and provides astaxanthin-loaded polylactic acid-glycolic acid nanoparticles (ASX-PLGA NPs) as comparison.
Method: ApoE-/- mice were fed a high-fat diet with ASX or statin intervention.
Environ Health Perspect
January 2025
Division of Experimental Medicine, Department of Medicine, McGill University, Montréal, Canada.
Background: Millions worldwide are exposed to elevated levels of arsenic that significantly increase their risk of developing atherosclerosis, a pathology primarily driven by immune cells. While the impact of arsenic on immune cell populations in atherosclerotic plaques has been broadly characterized, cellular heterogeneity is a substantial barrier to in-depth examinations of the cellular dynamics for varying immune cell populations.
Objectives: This study aimed to conduct single-cell multi-omics profiling of atherosclerotic plaques in apolipoprotein E knockout () mice to elucidate transcriptomic and epigenetic changes in immune cells induced by arsenic exposure.
Clin Transl Med
January 2025
Vascular Research Laboratory, IIS-Fundación Jiménez Díaz, Madrid, Spain.
Background: Atherosclerosis is a chronic inflammatory disease characterized by the accumulation of lipids and leukocytes within the arterial wall. By studying the aortic transcriptome of atherosclerosis-prone apolipoprotein E (ApoE) mice, we aimed to identify novel players in the progression of atherosclerosis.
Methods: RNA-Seq analysis was performed on aortas from ApoE and wild-type mice.
Sci Adv
January 2025
School of Life Science, Beijing Institute of Technology, Beijing 100081, China.
The prevalent tumor-supporting glioblastoma-associated macrophages (GAMs) promote glioblastoma multiforme (GBM) progression and resistance to multiple therapies. Repolarizing GAMs from tumor-supporting to tumor-inhibiting phenotype may troubleshoot. However, sufficient accumulation of drugs at the GBM site is restricted by blood-brain barrier (BBB).
View Article and Find Full Text PDFJ Transl Med
January 2025
Department of Respiratory and Critical Care Medicine, Beijing Institute of Respiratory Medicine, Beijing Chaoyang Hospital, Capital Medical University, N0.5 Jingyuan Road, Beijing, China.
Background: Acute respiratory distress syndrome (ARDS) is causatively associated with excessive alveolar inflammation involving deregulated pro-inflammatory macrophage polarization. High-density lipoprotein (HDL) showed critical anti-inflammatory roles by modulating macrophage function, and its adverse transition to pro-inflammation has an important role in the pathogenesis of ARDS. However, the relationship between HDL protein constituents and functional remodeling is unknown in ARDS.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!