Proliferation and tangential migration of neural precursor cells are essential determinants of CNS development. We have established cell culture models of both these processes using neural precursor cells grown as neurospheres. The pattern of migration that we observe in these cells is homotypic and occurs in the absence of a glial or neuronal scaffold, and is therefore equivalent to that previously described as chain migration. To determine the role of integrins in proliferation and migration, we have analysed the expression pattern of integrins on neurosphere cells and then performed blocking peptide and antibody experiments. Neurosphere cells express five major integrins, alpha5 beta1, alpha 6Abeta1, alphav beta1, alphav beta5 and alpha vbeta8 and, in addition, express low levels of alpha 6Bbeta1. Chain migration is inhibited by blocking the alpha 6beta1 integrin. Proliferation, by contrast, is inhibited by blocking the other beta1 integrins, alphav beta1 and alpha5 beta1. These results show that integrins are important regulators of neural precursor cell behaviour, with distinct beta1 integrins regulating proliferation and migration. They also demonstrate a novel role for the alpha6 beta1 integrin in the cell-cell interactions underlying homotypic chain migration.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1242/dev.125.16.3167 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!