The visual system analyses information by decomposing complex objects into simple components (visual features) that are widely distributed across the cortex. When several objects are present simultaneously in the visual field, a mechanism is required to group (bind) together visual features that belong to each object and to separate (segment) them from features of other objects. An attractive scheme for binding visual features into a coherent percept consists of synchronizing the activity of their neural representations. If synchrony is important in binding, one would expect that binding and segmentation are facilitated by visual displays that are temporally manipulated to induce stimulus-dependent synchrony. Here we show that visual grouping is indeed facilitated when elements of one percept are presented at the same time as each other and are temporally separated (on a scale below the integration time of the visual system) from elements of another percept or from background elements. Our results indicate that binding is due to a global mechanism of grouping caused by synchronous neural activation, and not to a local mechanism of motion computation.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1038/28166 | DOI Listing |
PLoS One
January 2025
Department of Surgical and Medical Sciences, Magna Graecia University of Catanzaro, Catanzaro, Italy.
Plant viruses pose a significant threat to global agriculture and require efficient tools for their timely detection. We present AutoPVPrimer, an innovative pipeline that integrates artificial intelligence (AI) and machine learning to accelerate the development of plant virus primers. The pipeline uses Biopython to automatically retrieve different genomic sequences from the NCBI database to increase the robustness of the subsequent primer design.
View Article and Find Full Text PDFPLoS One
January 2025
School of Industrial and Management Engineering, Korea University, Seongbuk-gu, Seoul, Republic of Korea.
A medical specialty prediction system for remote diagnosis can reduce the unexpected costs incurred by first-visit patients who visit the wrong hospital department for their symptoms. To develop medical specialty prediction systems, several researchers have explored clinical predictive models using real medical text data. Medical text data include large amounts of information regarding patients, which increases the sequence length.
View Article and Find Full Text PDFPLoS One
January 2025
Department of Radiology, Chung-Ang University Gwangmyeong Hospital, Seoul, Republic of Korea.
This study aimed to evaluate the feasibility of VX2 tumor in rabbit auricles as an experimental model for intra-arterial embolization. This study was approved by our Institutional Animal Care and Use Committee. VX2 tumors were implanted in both auricles of 12 New Zealand White Rabbits.
View Article and Find Full Text PDFJAMA Ophthalmol
January 2025
John A. Moran Eye Center, Department of Ophthalmology & Visual Sciences, Department of Neurology, University of Utah Health, Salt Lake City.
Importance: Nearly 2% of the US population received a prescription for semaglutide in 2023. There has been a recent concern that this drug and other similar medications may be associated with ophthalmic complications.
Objective: To report ophthalmic complications associated with the use of semaglutide or tirzepatide.
Front Neurol
January 2025
Graduate School, Beijing University of Chinese Medicine, Beijing, China.
Objective: To compare the magnetic resonance imaging (MRI) features of the olfactory cleft (OC) and olfactory bulbs (OBs) in patients with long COVID-19-related (LCOD) and non-COVID-19 postviral olfactory dysfunction (NCPVOD) to explore mechanisms underlying persistent olfactory dysfunction.
Methods: This retrospective analysis included patients diagnosed with LCOD or NCPVOD at the China-Japan Friendship Hospital between February 2023 and July 2024. All patients underwent olfactory psychophysical testing (Sniffin' Sticks), a visual analogue scale (VAS) for olfactory function, and high-resolution MRI scans of the olfactory pathway.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!