The anteroventral cochlear nucleus (AVCN) is the first central processing site for acoustic information. The influence and extent of convergent auditory nerve input to AVCN neurons was investigated using brief (<0.2 ms) intracochlear electrical activation of spiral ganglion cells. In 40 neurons recorded in vivo, the major intracellular response to stimulation was an excitatory postsynaptic potential (EPSP) with short latency (approximately 1 ms) and fast rise time (<1 ms). Graduated EPSP amplitude increases were also seen with increasing stimulation strength resulting in spike generation. Hyperpolarization followed excitation in most neurons, its extent distinguished three response types: Type I showed no hyperpolarization; Type II and Type III displayed short (<10 ms) and long (>19 ms) duration hyperpolarization, respectively. Hyperpolarization was attributed to an inhibitory postsynaptic potential (IPSP) in addition to spike after hyperpolarization. Neurobiotin filling identified Type I and II neurons as stellate and Type III as bushy cells. These results suggests that AVCN neurons receive direct, possibly convergent, excitatory input from auditory nerves emanating from spiral ganglion cells with hyperpolarization resulting from polysynaptic inhibitory input.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/s0361-9230(98)00017-3 | DOI Listing |
J Neurosci
December 2024
Dept. Biological Sciences, University at Buffalo, State University of New York, Buffalo, NY 14260
The mammalian auditory system encodes sounds with subtypes of spiral ganglion neurons (SGNs) that differ in sound level sensitivity, permitting discrimination across a wide range of levels. Recent work suggests the physiologically-defined SGN subtypes correspond to at least three molecular subtypes. It is not known how information from the different subtypes converges within the cochlear nucleus.
View Article and Find Full Text PDFBiology (Basel)
October 2024
Roxelyn and Richard Pepper Department of Communication Sciences and Disorders, Northwestern University, Evanston, IL 60208, USA.
Neurotrophins are proteins that mediate neuronal development using spatiotemporal signaling gradients. The chicken nucleus magnocellularis (NM), an analogous structure to the mammalian anteroventral cochlear nucleus, provides a model system in which signaling between the brain-derived neurotrophic factor (BDNF) and tyrosine receptor kinase B (TrkB) is temporally regulated. In the NM, TrkB expression is high early in development (embryonic [E] day 9) and is downregulated until maturity (E18-21).
View Article and Find Full Text PDFeNeuro
August 2024
Department of Biological Sciences, University at Buffalo, State University of NewYork, Buffalo, New York 14260
Neuroreport
July 2024
Department of Life Sciences.
Danshensu, also known as salvianic acid A, is a primary active compound extracted from a traditional Chinese herb Danshen (Salvia miltiorrhiza). While its antioxidative and neuroprotective effects are well-documented, the underlying mechanisms are poorly understood. In this study, we sought out to investigate if and how Danshensu modulates neuronal excitability and voltage-gated ionic currents in the central nervous system.
View Article and Find Full Text PDFHear Res
August 2024
Neuroscience Institute of Castilla y León (INCyL), University of Salamanca, Salamanca, Spain; Department of Cell Biology and Pathology, Medical School, University of Salamanca, Salamanca, Spain; Institute of Biomedical Research of Salamanca (IBSAL), Salamanca, Spain. Electronic address:
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!