Human skin, including nerves and sensory corpuscles, displays immunoreactivity (IR) for low- (p75) and high-affinity (TrkA-like) receptors for nerve growth factor (NGF), the best characterized member of the family of neurotrophins. This study was designed to analyze the changes induced by spinal cord and peripheral nerve injuries in the expression of neurotrophin receptors in digital skin, with special reference to nerves and sensory corpuscles. Skin biopsy samples were obtained from 1) the hand and toes of normal subjects, 2) below the level of the lesion of patients with spinal cord injury affecting dorsal and lateral funiculi, 3) the cutaneous territory of entrapped peripheral nerves (median and ulnar nerves), and 4) the cutaneous territory of sectioned and grafted nerves (median nerve). The pieces were formalin-fixed and paraffin-embedded, cut in serial sections, and processed for immunohistochemistry using antibodies against human p75 and TrkA proteins. The percentage of sensory corpuscles displaying IR for p75 and TrkA-like, as well as the intensity of IR developed within them, was assessed using quantitative image analysis. Spinal cord severance causes a decrease in p75 IR in Meissner and Pacinian corpuscles, whereas TrkA-like IR did not vary. In other nonnervous tissues (i.e., epidermis, sweat glands), both p75 and TrkA-like IR was diminished or even absent. Similar but more severe changes were encountered in the skin from the territory of entrapped nerves. Finally, in subjects with sectioned-grafted nerves, p75 IR was found close to controls in nerves, reduced in Meissner corpuscles, and absent in the inner core of the Pacinian ones; TrkA-like IR was in the perineurium, a small percentage of Meissner corpuscles (about 7%), and the outer core and capsule of the Pacinan corpuscles. In the nonnervous tissues, p75 IR was practically absent, whereas TrkA-like IR did not change. No changes in the expression of neurotrophin receptors were observed in Merkel cells of the different groups. Present results show the following: 1) expression of nerve p75 IR in human cutaneous sensory corpuscles is sensitive to central deafferentation, to blockade or difficulty in axonal transport, and to disruption of axonal continuity independently of possible restoration of axonal integrity due to grafts; 2) expression of TrkA-like IR in nerves and sensory corpuscles is sensitive only to nerve transection; 3) the corpuscular Schwann-related cells are the only cells involved in the above modifications, the perineurial cells remaining unchanged; 4) the expression of p75 and TrkA-like IR by Merkel cells is independent of normal innervation; 5) an adequate innervation of the skin seems to be necessary for the expression of p75 but not TrkA-like in nonneuronal cells, especially in the epidermis. A role for NGF in the maintenance of epidermis integrity is discussed.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/(SICI)1097-0185(199807)251:3<371::AID-AR13>3.0.CO;2-L | DOI Listing |
Cell
January 2025
Department of Neurobiology, Harvard Medical School, 220 Longwood Avenue, Boston, MA 02115, USA; Howard Hughes Medical Institute, Harvard Medical School, 220 Longwood Avenue, Boston, MA 02115, USA. Electronic address:
Vibrations are ubiquitous in nature, shaping behavior across the animal kingdom. For mammals, mechanical vibrations acting on the body are detected by mechanoreceptors of the skin and deep tissues and processed by the somatosensory system, while sound waves traveling through air are captured by the cochlea and encoded in the auditory system. Here, we report that mechanical vibrations detected by the body's Pacinian corpuscle neurons, which are distinguished by their ability to entrain to high-frequency (40-1,000 Hz) environmental vibrations, are prominently encoded by neurons in the lateral cortex of the inferior colliculus (LCIC) of the midbrain.
View Article and Find Full Text PDFMicroPubl Biol
November 2024
Biology, California State University, Northridge, Northridge, California, United States.
The skin is the most extensive organ in vertebrates, composed of two layers: the epidermis and the dermis. Sensory axons originating from the dorsal root ganglia innervate the skin mechanoreceptors in the dermis. Elasmobranchs, which appeared 380 million years ago, are characterized by rough skin composed of dermal denticles.
View Article and Find Full Text PDFSensory thresholds enable animals to regulate their behavioral responses to environmental threats. Despite the importance of sensory thresholds for animal behavior and human health, we do not yet have a full appreciation of the underlying molecular-genetic and circuit mechanisms. The larval zebrafish acoustic startle response provides a powerful system to identify molecular mechanisms underlying establishment of sensory thresholds and plasticity of thresholds through mechanisms like habituation.
View Article and Find Full Text PDFAnat Rec (Hoboken)
October 2024
Department of Anatomy, Midwestern University, Glendale, Arizona, USA.
The origin of primates has long been associated with an increased emphasis on manual grasping and touch. Precision touch, facilitated by specialized mechanoreceptors in glabrous skin, provides critical sensory feedback for grasping-related tasks and perception of ecologically-relevant stimuli. Despite its importance, studies of mechanoreceptors in primate hands are limited, in part due to challenges of sample availability and histological methods.
View Article and Find Full Text PDFOper Neurosurg (Hagerstown)
September 2024
Department of Neurosurgery, Leiden University Medical Center, Leiden, The Netherlands.
Background And Objectives: Postoperative pain may occur following open carpal tunnel release (OCTR). Various causes have been postulated. During OCTR, adipose tissue located between the palmar aponeurosis and the flexor retinaculum is exposed.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!