We have previously shown that chronic insulin treatment of rat hepatocytes increases the fraction of edited apolipoprotein B (apoB) mRNA from approximately 50% to as much as 90%. We have now examined the effect of insulin on apobec-1 mRNA abundance and demonstrate that increased editing of apoB mRNA following insulin treatment is accompanied by elevated apobec-1 mRNA levels in primary rat hepatocytes. Time-course measurements of the effects of insulin on apoB mRNA editing and apobec-1 mRNA abundance showed that both were elevated almost maximally within 48 hours and sustained for at least 5 days of insulin treatment.

Download full-text PDF

Source
http://dx.doi.org/10.1016/s0026-0495(98)90128-7DOI Listing

Publication Analysis

Top Keywords

rat hepatocytes
12
insulin treatment
12
apob mrna
12
apobec-1 mrna
12
mrna editing
8
mrna abundance
8
mrna
7
insulin
6
insulin increases
4
increases expression
4

Similar Publications

Metabolism and effects of acetoaceto--toluidine in the urinary bladder of humanized-liver mice.

J Toxicol Pathol

January 2025

Department of Molecular Pathology, Graduate School of Medicine, Osaka Metropolitan University, 1-4-3 Asahi-machi, Abeno-ku, Osaka, Japan.

Occupational exposure to aromatic amines is a major risk factor for urinary bladder cancer. Our previous studies showed that acetoaceto--toluidine, which is produced using -toluidine as a raw material, promotes urinary bladder carcinogenesis in rats. We also found high concentrations of -toluidine, a human bladder carcinogen, in the urine of acetoaceto--toluidine-treated rats, indicating that urinary -toluidine derived from acetoaceto--toluidine may play an important role in bladder carcinogenesis.

View Article and Find Full Text PDF

The liver, a major organ involved in substance metabolism, is highly susceptible to toxicity induced by chemicals and their metabolites. Although damage-associated molecular patterns (DAMPs) have been implicated in the development of sterile inflammation following cell injury, their involvement in chemically induced hepatocellular injury remains underexplored. This study aimed to determine the role of high-mobility group box 1 (HMGB1), a DAMP, in a rat model of liver injury treated with thioacetamide, a hepatotoxicant.

View Article and Find Full Text PDF

Cystic degeneration (CD) in the liver is a cyst-like lesion composed of one or more pseudocysts lacking lining cells, occurring spontaneously in rats older than 12 months, with a male predilection. In this study, 32 CDs were identified in 23 out of 104 non-treated, control male Sprague-Dawley rats from two combined chronic toxicity and carcinogenicity studies with agrochemicals. They were examined histologically, histochemically, and immunohistochemically to assess the pathogenesis and pathological significance of CD, focusing on pseudocapillarization in aged rat liver.

View Article and Find Full Text PDF

Background/aims: Epithelial-to-mesenchymal transition (EMT) plays a crucial role in hepatic fibrogenesis and liver repair in chronic liver disease. Our research highlights the antifibrotic potential of placenta-derived mesenchymal stem cells (PD-MSCs) and the role of phosphatase of regenerating liver-1 (PRL-1) in promoting liver regeneration.

Methods: We evaluated the efficacy of PD-MSCs overexpressing PRL-1 (PD-MSCsPRL-1) in a bile duct ligation (BDL)-induced rat injury model, focusing on their ability to regulate EMT.

View Article and Find Full Text PDF

The harmful by-product of paracetamol is known as N-Acetyl-p-benzoquinoneimine, (NAPQI). When paracetamol is given at therapeutic dosages or in excess, it undergoes Phase I metabolism in the liver via Cytochrome P-450 2E1 (CYP2E1), and then it produces NAPQI. Previous studies reported that a non-ionic surfactant known as Brij 35 (Polyoxyethylene lauryl ether) has been shown to be an effective inhibitor of CYP2E1 and P-glycoprotein (P-gp).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!