Intracerebroventricular administration of alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionate (AMPA) or kainate caused a rise of the temperature of the brain and the rectum in urethane-anesthetized rats. An AMPA-kainate receptor antagonist, 6,7-dinitroquinoxaline-2,3-dione (DNQX), significantly suppressed the AMPA- and kainate-induced rises of brain and rectal temperatures. An N-methyl-d-aspartate receptor antagonist, MK-801, also suppressed the rises of the brain and rectal temperatures induced by AMPA or kainate, but the profiles of the suppressive effects of MK-801 were different between rats treated with AMPA and kainate. An antipyretic agent, indomethacin, completely suppressed the AMPA-induced rises of brain and rectal temperatures. Although indomethacin completely suppressed the kainate-induced rise of the rectal temperature as well, the brain temperature was still raised. These findings suggest that distinct mechanisms may be involved in the temperature rise of the brain and the rectum mediated through AMPA and kainate receptor stimulation.

Download full-text PDF

Source
http://dx.doi.org/10.1016/s0006-8993(98)00453-3DOI Listing

Publication Analysis

Top Keywords

ampa kainate
16
brain rectum
12
rises brain
12
brain rectal
12
rectal temperatures
12
temperature rise
8
rise brain
8
intracerebroventricular administration
8
administration alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionate
8
receptor antagonist
8

Similar Publications

Non-canonical Roles of Complement in the CNS: From Synaptic Organizer to Presynaptic Modulator of Glutamate Transmission.

Curr Neuropharmacol

January 2025

Department of Pharmacy, DIFAR, Pharmacology and Toxicology Section, University of Genoa, Viale Cembrano 4, 16148, Genoa, Italy.

The central nervous system (CNS) is not an immune-privileged compartment, but it is intimately intertwined with the immune system. Among the components shared by the two compartments is the complement, a main constituent of innate immunity, which is also produced centrally and controls the development and organization of synaptic connections. Complement is considered a doubled-faced system that, besides controlling the physiological development of the central network, also subserves synaptic engulfment pivotal to the progression of neurodegenerative diseases.

View Article and Find Full Text PDF

Although angiotensin 1-7 (Ang 1-7) and its role as a part of the "protective" axis of the renin-angiotensin system are well described in the literature, the mechanisms of its angiotensin II-like pressor and tachycardic effects following its acute central administration are not fully understood. It was the aim of the present study to examine which receptors contribute to the aforementioned cardiovascular effects. Ang 1-7 and antagonists for glutamate, GABA, vasopressin, thromboxane A (TP), α-adrenergic, and P2X purinoceptors or modulators of oxidative stress were injected into the paraventricular nucleus of the hypothalamus (PVN) of urethane-anesthetized male Wistar rats.

View Article and Find Full Text PDF

Cyto-, gene, and multireceptor architecture of the early postnatal mouse hippocampal complex.

Prog Neurobiol

December 2024

Institute of Neuroscience and Medicine (INM-1), Research Centre Jülich, Jülich 52425, Germany; C. & O. Vogt Institute for Brain Research, Heinrich-Heine-University, Dusseldorf 40225, Germany.

Neurotransmitter receptors are key molecules in signal transmission in the adult brain, and their precise spatial and temporal balance expressions also play a critical role in normal brain development. However, the specific balance expression of multiple receptors during hippocampal development is not well characterized. In this study, we used quantitative in vivo receptor autoradiography to measure the distributions and densities of 18 neurotransmitter receptor types in the mouse hippocampal complex at postnatal day 7, and compared them with the expressions of their corresponding encoding genes.

View Article and Find Full Text PDF

Introduction: Pubertal maturation is marked by significant changes in stress-induced hormonal responses mediated by the hypothalamic-pituitary-adrenal (HPA) axis, with prepubertal male and female rats often exhibiting greater HPA reactivity compared to adult males and females. Though the implications of these changes are unclear, elevated stress responsiveness might contribute to the stress-related vulnerabilities often associated with puberty.

Methods: The current experiments sought to determine whether differences in cellular activation, as measured by FOS immunohistochemistry, or excitatory ionotropic glutamate receptor subunit expression, as measured by qRT-PCR, in the paraventricular nucleus (PVN) were associated with these noted pubertal shifts in stress reactivity in male and female rats.

View Article and Find Full Text PDF

The diversity of AMPA receptor inhibition mechanisms among amidine-containing compounds.

Front Pharmacol

October 2024

Laboratory for the Research of the Mechanisms of Regulation and Compensation of Nervous System Excitability Pathologies, I.M. Sechenov Institute of Evolutionary Physiology and Biochemistry RAS, Saint Petersburg, Russia.

Amidine-containing compounds are primarily known as antiprotozoal agents (pentamidine, diminazene, furamidine) or as serine protease inhibitors (nafamostat, sepimostat, camostat, gabexate). DAPI is widely recognized as a fluorescent DNA stain. Recently, it has been shown that these compounds also act as NMDA receptor inhibitors.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!