Homologous recombination is a precise genetic event that can introduce specific alteration in the genome. A planned targeted disruption by homologous recombination of the macrophage migration inhibitory factor (Mif) locus in mouse embryonic stem (ES) cells yielded the targeted clones, some of which had genomic rearrangements inconsistent with the expected homologous recombination event. A detailed characterization of the recombination breakpoints in two of these clones revealed several sequence motifs with possible roles in recombination. These motifs included short regions of sequence identity that may promote DNA alignment, multiple 5'-AAGG/TTCC-3' tetrameres, topoisomerase I consensus sites, and AT-rich sequences that can promote DNA cleavage and recombination. A retrovirus-like intracisternal-A particle (IAP) family sequence was also identified upstream of the Mif gene, and the LTR of this IAP was involved in one of the recombinations. Identification and characterization of such sequence motifs will be valuable for the gene targeting experiments.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/s0378-1119(98)00271-6 | DOI Listing |
Cancer Sci
January 2025
Department of Gastrointestinal Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, China.
Pancreatic ductal adenocarcinoma (PDAC) is a highly lethal disease with poor prognosis and limited treatment options. While the majority of PDAC cases harbor KRAS mutations, approximately 8%-10% are KRAS wild-type (KRAS-WT). These KRAS-WT tumors often contain actionable mutations and gene fusions, making them more suitable for precision therapies.
View Article and Find Full Text PDFDengue virus (DENV) remains a significant public health threat in tropical and subtropical regions, with effective antiviral treatments and vaccines still not fully established despite extensive research. A critical aspect of vaccine development for DENV involves selecting proteins from both structural and non-structural regions of the virus to activate humoral and cellular immune responses effectively. In this study, we developed a novel vaccine for dengue virus serotype 2 (DENV2) using a heterologous Prime-Boost strategy that combines an adenoviral vector (Ad) with subunit vaccines.
View Article and Find Full Text PDFGenomic and evolutionary analysis of epidemic porcine hepatitis E virus (HEV) in the Tibetan Plateau was performed. Faecal samples were collected from 216 Tibetan pigs and 78 Tibetan Yorkshire (Large White) and 53 tissue samples from Yorkshire from the Linzhi City slaughterhouse. Total RNA was extracted from faeces and fragments of HEV open reading frame 2 (ORF2) detected by reverse transcription and nested polymerase chain reaction (RT-nPCR) and cloned.
View Article and Find Full Text PDFFront Immunol
January 2025
Sino-British Research Centre for Molecular Oncology, National Centre for International Research in Cell and Gene Therapy, State Key Laboratory of Esophageal Cancer Prevention & Treatment, School of Basic Medical Sciences, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, China.
Pancreatic cancer is one of the most aggressive cancers and poses significant challenges to current therapies because of its complex immunosuppressive tumor microenvironment (TME). Oncolytic viruses armed with immunoregulatory molecules are promising strategies to overcome limited efficacy and target inaccessible and metastatic tumors. In this study, we constructed a tumor-selective vaccinia virus (VV) with deletions of the TK and A49 genes (VVLΔTKΔA49, VVL-DD) using CRISPR-Cas9-based homologous recombination.
View Article and Find Full Text PDFBackground: Genomic data is essential for clinical decision-making in precision oncology. Bioinformatic algorithms are widely used to analyze next-generation sequencing (NGS) data, but they face two major challenges. First, these pipelines are highly complex, involving multiple steps and the integration of various tools.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!