Tau isoforms migrating at 46-68 and 97-115 kDa were prominent within heat-stable Triton-soluble material, and were present in lesser concentration with Triton-insoluble cytoskeletons, derived from undifferentiated SH-SY-5Y human neuroblastoma cells. Conversely, a 26-30 kDa tau isoform was enriched in the cytoskeleton and detected at relatively minor levels within cytosolic fractions. Pulse labeling with 35S-methionine indicated that this 26-30 kDa "small tau" did not represent a breakdown product of larger isoforms. Since the nucleus is retained within the Triton-insoluble cytoskeleton, additional cultures were fractionated onto sucrose to obtain purified nuclei. The vast majority of small tau was recovered within purified nuclei. Small tau was reactive with tau antibodies directed towards N-terminal, C-terminal and central epitopes, further confirming that this small isoform was not derived from proteolytic cleavage of larger tau isoforms. Small tau demonstrated alkaline phosphatase-sensitive reactivity with multiple phospho-dependent tau antibodies. Small tau was depleted within 3 days of retinoic acid-induced differentiation, suggesting that the putative function of this isoform may be obsolete following terminal differentiation of neurons.

Download full-text PDF

Source
http://dx.doi.org/10.1016/s0736-5748(97)00044-0DOI Listing

Publication Analysis

Top Keywords

small tau
16
26-30 kda
12
tau
10
tau isoform
8
human neuroblastoma
8
neuroblastoma cells
8
tau isoforms
8
purified nuclei
8
tau antibodies
8
small
5

Similar Publications

Objectives: Ultrasound is a promising low-risk imaging modality that can provide objective airway measurements that may circumvent limitations of drug-induced sleep endoscopy (DISE). This study was devised to identify ultrasound-derived anatomical measurements that could accurately predict collapse pattern and location based on the VOTE criteria (VOTE: Velum, Oropharynx, Tongue, and Epiglottis).

Methods: Ultrasonography was performed on 20 adult patients of various airway subsites while awake and sedated with concurrent endoscopy performed during drug-induced sleep.

View Article and Find Full Text PDF

Roles of C/EBPβ/AEP in Neurodegenerative Diseases.

Curr Top Med Chem

January 2025

Department of Histology and Embryology, School of Basic Medicine, Hengyang Medical School, University of South China, Hengyang, 421001, China.

In recent years, an increasing number of studies have shown that increased activation of aspartic endopeptidases (AEPs) is a common symptom in neurodegenerative diseases (NDDs). AEP cleaves amyloid precursor protein (APP), tau (microtubule-associated protein tau), α- synuclein (α-syn), SET (a 39-KDa phosphoprotein widely expressed in various tissues and localizes predominantly in the nucleus), and TAR DNA-binding protein 43 (TDP-43), and promotes their aggregation, contributing to Alzheimer's disease (AD), Parkinson's disease (PD), Huntington's disease, multiple sclerosis (MS), amyotrophic lateral sclerosis (ALS), and frontotemporal dementia (FTD) pathogenesis. Abundant evidence supports the notion that CCAAT/enhancer-binding protein β (C/EBPβ)/AEP may play an important role in NDDs.

View Article and Find Full Text PDF

Age-related p53 SUMOylation accelerates senescence and tau pathology in Alzheimer's disease.

Cell Death Differ

January 2025

Department of Pathophysiology, School of Basic Medicine, Key Laboratory of Education Ministry/Hubei Province of China for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.

Aging is a major risk factor for Alzheimer's disease (AD). With the prevalence of AD increased, a mechanistic linkage between aging and the pathogenesis of AD needs to be further addressed. Here, we report that a small ubiquitin-related modifier (SUMO) modification of p53 is implicated in the process which remarkably increased in AD patient's brain.

View Article and Find Full Text PDF

Background: A considerable proportion (21%) of patients with common variable immunodeficiency (CVID) suffers from depression. These subjects are characterized by reduced naïve T cells and a premature T cell senescence similar to that of patients with major depressive disorder (MDD). It is known that T cells are essential for limbic system development/function.

View Article and Find Full Text PDF

Intranasal oxytocin for apathy in people with frontotemporal dementia (FOXY): a multicentre, randomised, double-blind, placebo-controlled, adaptive, crossover, phase 2a/2b superiority trial.

Lancet Neurol

February 2025

Department of Clinical Neurological Sciences, University of Western Ontario, London, ON, Canada; Department of Cognitive Neurology, St Joseph's Health Care London, London, ON, Canada. Electronic address:

Background: No treatments exist for apathy in people with frontotemporal dementia. Previously, in a randomised double-blind, placebo-controlled, dose-finding study, intranasal oxytocin administration in people with frontotemporal dementia improved apathy ratings on the Neuropsychiatric Inventory over 1 week and, in a randomised, double-blind, placebo-controlled, crossover study, a single dose of 72 IU oxytocin increased blood-oxygen-level-dependent signal in limbic brain regions. We aimed to determine whether longer treatment with oxytocin improves apathy in people with frontotemporal dementia.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!