Epiluminescence microscopy (ELM) is a non-invasive technique for in vivo examination which can provide additional criteria for the clinical diagnosis of pigmented skin lesions (PSLs). In the present study we attempt to determine whether PSLs can be automatically diagnosed by an integrated computerized system. This system should recognize the PSL, automatically extract features and use these features in training an artificial neural network, which should--if sufficiently trained--be capable of recognizing and classifying a new PSL without human aid. One hundred and twenty images of randomly selected histologically proven PSLs (33 common naevi, 48 dysplastic naevi and 39 malignant melanomas) were used in this study. The images were digitally obtained and the morphological features of the PSLs were extracted electronically without human assistance. The numerical data were then divided into learning and testing cases and linked to an artificial neural network for training and for further classification of lesions that the system had not been trained on. Our results show that the computerized system was able to automatically identify 95% of the PSLs presented. The sensitivity and specificity of the computerized system were 90% and 74% respectively. In contrast, when differentiating between individual types of lesions, the system performed at true positive rates of only 38% for malignant melanoma, 62% for dysplastic naevi and 33% for common naevi. Our data indicate that (1) ELM images of PSLs provide an excellent source for digital image analysis; (2) the vast majority of PSLs can be correctly identified by a relatively simple (and thus not "intelligent") application of digital image analysis; (3) automatic feature extraction based mainly on ABCD rules provides reliable data on the distinction between benign and malignant PSLs; and (4) there is evidence that artificial neural networks can be trained to adequately discriminate between benign and malignant PSLs.

Download full-text PDF

Source
http://dx.doi.org/10.1097/00008390-199806000-00009DOI Listing

Publication Analysis

Top Keywords

artificial neural
16
image analysis
12
neural network
12
computerized system
12
psls
9
pigmented skin
8
skin lesions
8
common naevi
8
dysplastic naevi
8
lesions system
8

Similar Publications

Motivation: The drug-disease, gene-disease, and drug-gene relationships, as high-frequency edge types, describe complex biological processes within the biomedical knowledge graph. The structural patterns formed by these three edges are the graph motifs of (disease, drug, gene) triplets. Among them, the triangle is a steady and important motif structure in the network, and other various motifs different from the triangle also indicate rich semantic relationships.

View Article and Find Full Text PDF

Enhancing beer authentication, quality, and control assessment using non-invasive spectroscopy through bottle and machine learning modeling.

J Food Sci

January 2025

Digital Agriculture, Food and Wine Research Group, School of Agriculture, Food and Ecosystem Science, Faculty of Science, The University of Melbourne, Melbourne, Victoria, Australia.

Fraud in alcoholic beverages through counterfeiting and adulteration is rising, significantly impacting companies economically. This study aimed to develop a method using near-infrared (NIR) spectroscopy (1596-2396 nm) through the bottle, along with machine learning (ML) modeling for beer authentication, quality traits, and control assessment. For this study, 25 commercial beers from different brands, styles, and three types of fermentation were used.

View Article and Find Full Text PDF

Hardware neural networks could perform certain computational tasks orders of magnitude more energy-efficiently than conventional computers. Artificial neurons are a key component of these networks and are currently implemented with electronic circuits based on capacitors and transistors. However, artificial neurons based on memristive devices are a promising alternative, owing to their potentially smaller size and inherent stochasticity.

View Article and Find Full Text PDF

Predicting few disinfection byproducts in the water distribution systems using machine learning models.

Environ Sci Pollut Res Int

January 2025

Research Engineer I, Applied Research Center for Environment & Marine Studies, Research Institute, King Fahd University of Petroleum & Minerals, 31261, Dhahran, Saudi Arabia.

Concerns regarding disinfection byproducts (DBPs) in drinking water persist, with measurements in water treatment plants (WTPs) being relatively easier than those in water distribution systems (WDSs) due to accessibility challenges, especially during adverse weather conditions. Machine learning (ML) models offer improved predictions of DBPs in WDSs. This study developed multiple ML models to predict Trihalomethanes (THMs), Haloacetic Acids (HAAs), Dichloroacetonitrile (DCAN), and N-nitrosodimethylamine (NDMA) in WDSs using data collected over 13 years (2008-2020) from 113 water supply systems (WSS) in Ontario.

View Article and Find Full Text PDF

Adenosine receptors (A, A, A, A) play critical roles in cellular signaling and are implicated in various physiological and pathological processes, including inflammations and cancer. The main aim of this research was to investigate structure-activity relationships (SAR) to derive models that describe the selectivity and activity of inhibitors targeting Adenosine receptors. Structural information for 16,312 inhibitors was collected from BindingDB and analyzed using machine learning methods.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!