The SDS-fracture immunolabeling technique, unlike conventional freeze-fracture, provides direct evidence for the biochemical nature of membrane constituents. SDS-fracture immunolabeling shows that during differentiation of lens fiber cells the onset of junctional assembly is characterized by the presence of small clusters and linear arrays comprising connexins alpha3 and alpha8. At this initial stage MP26, a major fiber membrane constituent, appears to be colocalized with these two connexins. The application of double-immunogold labeling reveals that when large junctional plaques are assembled MP26 becomes mainly associated with the periphery of the junctional domains. This type of distribution suggests that MP26 may play a role in the clustering and gathering of connexons. In aged nuclear fiber membranes connexins, MP26 and their proteolytic derivatives form an orthogonal lattice of repeating subunits.

Download full-text PDF

Source
http://dx.doi.org/10.1242/jcs.111.15.2109DOI Listing

Publication Analysis

Top Keywords

sds-fracture immunolabeling
12
connexins mp26
8
lens fiber
8
mp26
5
assembly connexins
4
mp26 lens
4
fiber
4
fiber plasma
4
plasma membranes
4
membranes studied
4

Similar Publications

The SDS-fracture immunolabeling technique, unlike conventional freeze-fracture, provides direct evidence for the biochemical nature of membrane constituents. SDS-fracture immunolabeling shows that during differentiation of lens fiber cells the onset of junctional assembly is characterized by the presence of small clusters and linear arrays comprising connexins alpha3 and alpha8. At this initial stage MP26, a major fiber membrane constituent, appears to be colocalized with these two connexins.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!