Background: The aim of this study was to test the hypothesis that nimesulide, a nonsteroidal antiinflammatory drug, or its principal metabolite 4-hydroxynimesulide, is a selective inhibitor of prostaglandin H synthase-2 in human beings.
Methods: Heparinized whole blood samples obtained from healthy subjects were incubated with lipopolysaccharide (10 micrograms/ml) for 24 hours at 37 degrees C and prostaglandin E2 was measured in plasma as an index of monocyte prostaglandin H synthase-2 activity. The production of thromboxane B2 in whole blood allowed to clot at 37 degrees C for 60 minutes was assessed as an index of platelet prostaglandin H synthase-1 activity. We also measured the urinary excretion of 11-dehydrothromboxane B2, prostaglandin E2, 6-ketoprostaglandin F1 alpha, and thromboxane B2 as in vivo indexes of cyclooxygenase activity. All prostanoids were measured by previously validated radioimmunoassay techniques.
Results: In the whole blood assays in vitro, nimesulide was twentyfold more potent than 4-hydroxynimesulide toward the two isozymes and both compounds displayed a twentyfold preference for prostaglandin H synthase-2 versus prostaglandin H synthase-1. The administration of a single oral dose of 100 mg nimesulide to six healthy subjects significantly (p < 0.01) reduced monocyte prostaglandin H synthase-2 and prostaglandin H synthase-1 activity ex vivo by more than 90% and 50%, respectively, up to 6 hours. At 24 hours, prostaglandin H synthase-2 but not prostaglandin H synthase-1 activity was significantly reduced by 49% (p < 0.05). Nimesulide significantly (p < 0.05) reduced the urinary excretion of 11-dehydrothromboxane B2 and 6-ketoprostaglandin F1 alpha by approximately 30% and 25%, respectively, while not affecting that of prostaglandin E2 and thromboxane B2.
Conclusions: Nimesulide is a potent inhibitor of human monocyte prostaglandin H synthase-2. However, despite a twentyfold selectivity ratio, therapeutic plasma levels of nimesulide are sufficiently high to cause detectable inhibition of platelet prostaglandin H synthase-1.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/S0009-9236(98)90091-1 | DOI Listing |
Chin Med
January 2025
Department of Anesthesiology and Surgical Intensive Care Unit, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, 1665 Kongjiang Road, Shanghai, 200092, China.
Background: Sepsis-induced acute lung injury (ALI) is a severe clinical condition accompanied with high mortality. Tangeretin, which is widely found in citrus fruits, has been reported to exert antioxidant and anti-inflammatory properties. However, whether tangeretin protects against sepsis-induced ALI and the potential mechanisms remain unclear.
View Article and Find Full Text PDFNutrients
December 2024
Key Laboratory of Pu-er Tea Science, Ministry of Education, Yunnan Agricultural University, Kunming 650201, China.
: Fructus (AOF) is a medicinal and edible resource that holds potential to ameliorate hyperuricemia (HUA), yet its mechanism of action warrants further investigation. : We performed network pharmacology, molecular docking, molecular dynamics simulation, and in vitro experiments to investigate the potential action and mechanism of AOF against HUA. : The results indicate that 48 potential anti-HUA targets for 4 components derived from AOF were excavated and predicted through public databases.
View Article and Find Full Text PDFJ Poult Sci
January 2025
Department of Clinic Veterinary Medicine, College of Veterinary Medicine, Hunan Agricultural University, Changsha 410128, China.
Avian gout (AG) is detrimental to the survival and production performance of poultry and effective drugs are lacking. has shown clinical efficacy against arthritis and may have potential value in AG prevention and treatment. In the present study, the components and targets of and AG-related targets were identified using relevant databases.
View Article and Find Full Text PDFCardiovasc Toxicol
January 2025
Department of Cardiology, Zhongshan Hospital Wusong Branch, Fudan University, Shanghai, China.
5-fluorouracil (5-FU), a commonly utilized antitumor agent for the treatment of colon cancer, is linked to an increased risk of cardiovascular diseases. Antihistamines including astemizole (AST) have been reported to present cardiovascular toxicity; however, it remains unclear how 5-FU-mediated cardiotoxicity is affected by AST during the treatment of colon cancer. This study explored the role of AST in 5-FU-induced cardiotoxicity in colon cancer.
View Article and Find Full Text PDFBiology (Basel)
December 2024
Department of Industrial Engineering, University of Applied Sciences Technikum Wien, 17 Hoechstaedtplatz 6, 1200 Vienna, Austria.
Colitis, an inflammatory condition of the colon that encompasses ulcerative colitis (UC) and Crohn's disease, presents significant challenges due to the limitations and side effects of current treatments. This study investigates the potential of natural products, specifically AH and NSO, as organic therapeutic agents for colitis. Molecular docking studies were conducted to identify the binding affinities and interaction mechanisms between the bioactive compounds in AH and NSO and proteins implicated in colitis, such as those involved in inflammation and oxidative stress pathways.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!