We have previously defined depressed mitochondrial function as a determinant in colon cancer risk and progression and established that metabolism of butyrate, a short-chain fatty acid generated during the fermentation of fiber by endogenous intestinal bacteria, induces mitochondrial function-dependent growth arrest and apoptosis of colonic carcinoma cells in vitro. Here, we dissect the relationships among mitochondrial function, growth arrest, and apoptosis, reporting that initiation and maintenance of butyrate-mediated p53-independent p21WAF1/Cip1 induction and subsequent G0/G1 arrest require an intact mitochondrial membrane potential (delta psi(mt)) and that the process of dissipation of the delta psi(mt) is then essential for initiation of a butyrate-induced apoptotic cascade. Thus, we hypothesize that mitochondria play a pivotal role in coordinating proliferation and apoptosis pathways, a coordination that must be tightly regulated in rapidly renewing tissues, such as the colonic mucosa.

Download full-text PDF

Source

Publication Analysis

Top Keywords

delta psimt
12
mitochondrial membrane
8
membrane potential
8
potential delta
8
proliferation apoptosis
8
apoptosis pathways
8
colonic carcinoma
8
carcinoma cells
8
mitochondrial function
8
growth arrest
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!