The role of extracellular matrix in morphology, growth and lactoferrin synthesis and secretion in bovine mammary cells from a developing gland is poorly defined. In this study, bovine mammary cells from a hormone-primed developing gland were isolated and cultured on plastic, collagen, embedded within collagen, or on EHS-matrix, with the hormones prolactin, insulin, and cortisol in the presence or absence of fetal calf serum. Mammary cells on plastic or collagen spread and formed confluent cells sheets, while those embedded within collagen or on EHS-matrix maintained their acinar-like structure. Histological and ultrastructural analysis of cells showed that cells on plastic and collagen grew in multilayers, while those embedded within collagen or on EHS-matrix lacked any lumen structure. The ultrastructure of cells on different substrata more resembled an undifferentiated phenotype. Mammary cells secreted lactoferrin in increasing concentrations throughout the culture period. The total amount secreted in culture was regulated by extracellular matrix and fetal calf serum. Cells embedded within collagen in serum-free cultures secreted the lowest amounts of lactoferrin (up to 619 ng/ml; day 14), while those on collagen and supplemented with fetal calf serum secreted up to 4920 ng/ml at day 14. Fetal calf serum induced higher lactoferrin secretion within each substratum on which the cells were cultured. No intracellular accumulation of lactoferrin was noted in cells on plastic or collagen or those embedded within collagen, whereas those on EHS-matrix accumulated more than 500 ng/ml of lactoferrin intracellularly/intracinarly. Furthermore, when cultured on a similar substratum, cells from a developing gland secreted higher lactoferrin than cells from a lactating gland.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/s0040-8166(98)80071-2 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!