Histone acetyltransferase (HAT) activity has been demonstrated for several transcriptional activators, formally connecting chromatin modification with gene regulation. However, no effect on chromatin has been demonstrated. We have investigated the role of the HAT Gcn5 at the nucleosomally regulated PHO5 promoter. Under conditions of constitutive submaximal activation (i.e., in the absence of the negative regulator Pho80), deletion of Gcn5 determines a novel randomized nucleosomal organization across the promoter and leads to a dramatic reduction in activity. Furthermore, mutation of amino acids critical for Gcn5 HAT activity is sufficient to generate this structure. This intermediate state in chromatin opening gives way to the fully open structure upon maximal induction (phosphate starvation), even in the absence of Gcn5. Thus, Gcn5 is shown to affect directly the remodeling of chromatin in vivo.

Download full-text PDF

Source
http://dx.doi.org/10.1016/s1097-2765(00)80050-7DOI Listing

Publication Analysis

Top Keywords

hat activity
12
absence gcn5
8
gcn5 hat
8
pho5 promoter
8
chromatin
5
gcn5
5
hat
4
activity
4
activity defines
4
defines novel
4

Similar Publications

INhibitor of Growth (ING1-5) proteins are epigenetic readers that target histone acetyltransferase (HAT) or histone deacetylase (HDAC) complexes to the H3K4Me3 mark of active transcription. ING5 targets Moz/Morf and HBO1 HAT complexes that alter acetylation of H3 and H4 core histones, affecting gene expression. Previous experiments in vitro indicated that ING5 functions to maintain stem cell character in normal and in cancer stem cells.

View Article and Find Full Text PDF

Background: Memory is influenced by epigenetic mechanisms that regulate gene expression. Histone acetyltransferases (HATs), and histone deacetylases (HDACs), are two competitive enzymes regulating histone acetylation. Histone acetylation is reduced in Alzheimer's disease (AD) brains, and evidence has shown a synergistic regulation of HDACs and HATs activities.

View Article and Find Full Text PDF

Background: Although immunotherapy has achieved great progress in advanced triple-negative breast cancer (TNBC), there are still numerous patients who do not benefit from immunotherapy. Therefore, identification of the key molecule that induces immune escape and clarification of its specific mechanism in TNBC are urgently needed.

Methods: In this research, single cell sequencing and bulk sequencing were conducted for biomarker screening.

View Article and Find Full Text PDF

The second 3d-transition metal incorporation in Ni-(oxy)hydroxide has a drastic effect on alkaline OER and alcohol dehydrogenation reactivity. While Mn incorporation suppresses the alkaline OER, it greatly improves the alcohol dehydrogenation reactivity. A complete reversal of reactivity is obtained when Fe is incorporated, which shows better performance for alkaline OER with poor alcohol dehydrogenation reactivity.

View Article and Find Full Text PDF

Water pollution is a major global issue, and antibiotic drugs released into aquatic environments by the pharmaceutical industry, such as ciprofloxacin, have negative consequences on both human health and the ecosystem. In this study, the performance of PVA as a polymer ligand for ciprofloxacin (CPFX) removal is evaluated through polymer-enhanced ultrafiltration using a novel composite PVC-ZnO membrane. The initial concentration of the ciprofloxacin solution, pH, ionic strength, ideal polymer concentration, duration, and maximum retention capacity were among the factors that were examined.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!