We have used gene competition to distinguish between possible mechanisms of transcriptional activation of the genes of the human beta-globin locus. The insertion of a second beta-globin gene at different points in the locus shows that the more proximal beta gene competes more effectively for activation by the locus control region (LCR). Reducing the relative distance between the genes and the LCR reduces the competitive advantage of the proximal gene, a result that supports activation by direct interaction between the LCR and the genes. Visualization of the primary transcripts shows that the level of transcription is proportional to the frequency of transcriptional periods and that such periods last approximately 8 min in vivo. We also find that the position of the beta-globin gene in the locus is important for correct developmental regulation.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/s1097-2765(00)80014-3 | DOI Listing |
Sci Rep
January 2025
International Joint Research Laboratory for Recombinant Pharmaceutical Protein Expression System of Henan, Xinxiang Medical University, Xinxiang, China.
To meet the requirements of the biopharmaceutical industry, improving the yield of recombination therapeutic protein (RTP) from Chinese hamster ovary (CHO) cells is necessary. The human cytomegalovirus (CMV) promoter is widely used for RTP expression in CHO cells. To further improve RTP production, we truncated the human CMV intron and further evaluated the effect of four synthetic introns, including ctEF-1α first, EF-1α first, chimeric, and β-globin introns combined with the CMV promoter on recombinant expression levels in transient and stably recombinant CHO cells.
View Article and Find Full Text PDFDiagnosis (Berl)
January 2025
Faculty of Associated Medical Sciences, Centre for Research and Development of Medical Diagnostic Laboratories, Khon Kaen University, Khon Kaen, Thailand.
Objectives: This study reported a large cohort of fetal blood analysis of various hemoglobinopathies.
Methods: A total of 371 fetal blood specimens were recruited. Complete blood count and hemoglobin (Hb) analysis using capillary electrophoresis were performed.
J Biol Chem
January 2025
Department of Biochemistry and Molecular Biology, College of Medicine, Center for Epigenetics, Genetics Institute, UF Health Cancer Center, Powell-Gene Therapy Center, University of Florida, Gainesville, Florida 32610. Electronic address:
Transcription factor TFII-I/GTF2I is ubiquitously expressed and has been shown to play a role in the differentiation of hematopoietic cells and in the response to various cellular stressors. We previously demonstrated that TFII-I acts as a repressor of adult β-globin gene transcription and positively regulates expression of stress response proteins, including ATF3. Here we analyzed the function of TFII-I in TF-1 cells during erythroid differentiation and in response to cellular stress, including unfolded protein response, hypoxia, and oxidative stress.
View Article and Find Full Text PDFInt J Mol Sci
January 2025
Molecular Genetics Thalassaemia Department, The Cyprus Institute of Neurology & Genetics, Nicosia 2371, Cyprus.
Non-invasive prenatal testing (NIPT) has been widely adopted for the screening of chromosomal abnormalities; however, its adoption for monogenic disorders, such as β-thalassaemia, has proven challenging. Haemoglobinopathies are the most common monogenic disorders globally, with β-thalassaemia being particularly prevalent in Cyprus. This study introduces a non-invasive prenatal haplotyping (NIPH) assay for β-thalassaemia, utilizing cell-free DNA (cfDNA) from maternal plasma.
View Article and Find Full Text PDFGenes (Basel)
December 2024
Laboratory of Medical Genetics, Clinical Pathology UOC, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy.
Unlabelled: Thalassemias and hemoglobinopathies are among the most common genetic diseases worldwide and have a significant impact on public health. The decreasing cost of next-generation sequencing (NGS) has quickly enabled the development of new assays that allow for the simultaneous analysis of small nucleotide variants (SNVs) and copy number variants (CNVs) as deletions/duplications of α- and β-globin genes.
Background/objectives: This study highlighted the efficacy and rapid identification of all types of mutations in the α- and β-globin genes, including silent variants, using the Devyser Thalassemia NGS kit.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!