GABA is the principal neurotransmitter of inhibition in the adult mammalian brain. However, at early stages of development, including embryonic period and first week of postnatal life, GABA plays the role of main neurotransmitter of excitation. The paradoxical excitatory effect of GABA is due to an inversed chloride gradient and therefore a depolarizing direction of GABA-A receptor mediated responses. In addition, another type of GABAergic inhibition mediated by postsynaptic GABA-B receptors is not functional at early stage of life. In the neonatal rat hippocampus, GABA, acting via GABA-A receptors, activates voltage gated sodium and calcium channels and potentiates the activity of NMDA receptors by reducing their voltage dependent Mg2+ block. The temporal window when GABA exerts excitatory actions coincides with a particular pattern of activity of hippocampal neuronal network that is characterized by periodical giant depolarizing potentials (GDPs) reminiscent of interictal-like epileptiform discharges. Recent studies have shown that GDPs result from the synchronous discharge of GABAergic interneurons and principal glutamatergic pyramidal cells and are mediated by the synergistic excitatory actions of GABA-A and glutamate receptors. GDPs provide synchronous intracellular Ca2+ oscillations and may therefore be implicated in hebbian modulation of developing synapses and activity-dependent formation of the hippocampal network.
Download full-text PDF |
Source |
---|
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!