The molecular chaperones are a diverse set of protein families required for the correct folding, transport and degradation of other proteins in vivo. There has been great progress in understanding the structure and mechanism of action of the chaperonin family, exemplified by Escherichia coli GroEL. The chaperonins are large, double-ring oligomeric proteins that act as containers for the folding of other protein subunits. Together with its co-protein GroES, GroEL binds non-native polypeptides and facilitates their refolding in an ATP-dependent manner. The action of the ATPase cycle causes the substrate-binding surface of GroEL to alternate in character between hydrophobic (binding/unfolding) and hydrophilic (release/folding). ATP binding initiates a series of dramatic conformational changes that bury the substrate-binding sites, lowering the affinity for non-native polypeptide. In the presence of ATP, GroES binds to GroEL, forming a large chamber that encapsulates substrate proteins for folding. For proteins whose folding is absolutely dependent on the full GroE system, ATP binding (but not hydrolysis) in the encapsulating ring is needed to initiate protein folding. Similarly, ATP binding, but not hydrolysis, in the opposite GroEL ring is needed to release GroES, thus opening the chamber. If the released substrate protein is still not correctly folded, it will go through another round of interaction with GroEL.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1219577 | PMC |
http://dx.doi.org/10.1042/bj3330233 | DOI Listing |
Cell Mol Biol (Noisy-le-grand)
January 2025
Departamento de Biología Molecular y Genómica y Departamento de Disciplinas Filosófico Metodológicas e Instrumentales. Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara, Jalisco, México.
ABCG2 transporter protein is one of several markers of prostate cancer stem cells (PCSCs). Gene variants of ABCG2 could affect protein expression, function, or both. The aim of this study was to identify the genetic variability of the ABCG2 gene in Mexican patients with prostate cancer.
View Article and Find Full Text PDFStructure
January 2025
Molecular Microbiology, School of Biosciences, University of Sheffield, Sheffield S10 2TN, UK. Electronic address:
The core component of the actin cytoskeleton is the globular protein G-actin, which reversibly polymerizes into filaments (F-actin). Budding yeast possesses a single actin that shares 87%-89% sequence identity with vertebrate actin isoforms. Previous structural studies indicate very close overlap of main-chain backbones.
View Article and Find Full Text PDFNucleic Acids Res
January 2025
Department of Molecular Biology, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka 812-8582, Japan.
Oscillation of the active form of the initiator protein DnaA (ATP-DnaA) allows for the timely regulation for chromosome replication. After initiation, DnaA-bound ATP is hydrolyzed, producing inactive ADP-DnaA. For the next round of initiation, ADP-DnaA interacts with the chromosomal locus DARS2 bearing binding sites for DnaA, a DNA-bending protein IHF, and a transcription activator Fis.
View Article and Find Full Text PDFPest Manag Sci
January 2025
College of Plant Protection, Hunan Agricultural University, Changsha, China.
Background: Resistance to multiple herbicides is common in Lolium rigidum. Here, resistance to acetolactate synthase (ALS)- and susceptibility to acetyl-CoA carboxylase (ACCase)-inhibiting herbicides was confirmed in a glyphosate-resistant L. rigidum population (NLR70) from Australia and the mechanisms of pyroxsulam resistance were examined.
View Article and Find Full Text PDFInt J Mol Sci
December 2024
Clinical Pharmacology Department, Hospital Universitario de La Princesa, Instituto de Investigación Sanitaria La Princesa (IIS-Princesa), 28006 Madrid, Spain.
Statins are the primary drugs used to prevent cardiovascular disease by inhibiting the HMG-CoA reductase, an enzyme crucial for the synthesis of LDL cholesterol in the liver. A significant number of patients experience adverse drug reactions (ADRs), particularly musculoskeletal problems, which can affect adherence to treatment. Recent clinical guidelines, such as those from the Clinical Pharmacogenetics Implementation Consortium (CPIC) in 2022, recommend adjusting rosuvastatin doses based on genetic variations in the and genes to minimize ADRs and improve treatment efficacy.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!