Ciliary neurotrophic factor (CNTF) inhibits the production of tumor necrosis factor (TNF) in lipopolysaccharide (LPS)-treated mice and protects against LPS lethality when coadministered with its soluble receptor (sCNTFR alpha). Both of these activities are abolished in adrenalectomized (ADX) mice. LPS-induced pulmonary polymorphonuclear neutrophil (PMN) infiltration and nitric oxide (NO) production were also inhibited by CNTF + sCNTFR alpha but not by CNTF alone. sCNTFR alpha did not alter the clearance or tissue distribution of CNTF. Furthermore, CNTF variants coadministered with sCNTFR alpha protected against LPS toxicity in a manner related to their affinity for the beta components of CNTFR. Thus, inhibition of TNF production and protection against LPS lethality by CNTF/sCNTFR alpha require an intact hypothalamus-pituitary-adrenal axis (HPAA) and may be mediated by endogenous glucocorticoids. This protective effect is, at least in part, due to the inhibition of PMN infiltration and NO production, and appears to be mediated by cells displaying only beta-receptor subtypes.

Download full-text PDF

Source

Publication Analysis

Top Keywords

scntfr alpha
16
ciliary neurotrophic
8
neurotrophic factor
8
factor cntf
8
lps lethality
8
pmn infiltration
8
cntf scntfr
8
cntf
7
alpha
6
protective ciliary
4

Similar Publications

BACKGROUND: The ciliary neurotrophic factor (CNTF) receptor is composed of two signalling receptor chains, gp130 and the leukaemia inhibitory factor receptor, associated with a non-signalling CNTF binding receptor alpha component (CNTFR). This tripartite receptor has been shown to play important roles in the development of motor neurons, but the identity of the relevant ligand(s) is still not clearly established. Recently, we have identified two new ligands for the CNTF receptor complex.

View Article and Find Full Text PDF

Ciliary neurotrophic factor (CNTF) has pleiotropic actions on many neuronal populations as well as on glia. Signal transduction by CNTF requires that it bind first to CNTF-R, permitting the recruitment of gp130 and LIF-R, forming a tripartite receptor complex. Cells that only express gp130 and LIF-R, but not CNTF-R are refractory to stimulation by CNTF.

View Article and Find Full Text PDF

The functional receptor complex of ciliary neurotrophic factor (CNTF), a member of the gp130 family of cytokines, is composed of CNTF, the CNTF receptor alpha (CNTFR), gp130, and the leukemia inhibitory factor receptor (LIFR). However, the nature of the receptor-mediated interactions in this complex has not yet been resolved. To address this issue we have determined the solution structure of the C-terminal or BC domain of CNTFR and studied the interactions of CNTFR with LIFR and gp130.

View Article and Find Full Text PDF

Ciliary neurotrophic factor (CNTF) displays neurotrophic activities on motor neurons and neural cell populations both in vivo and in vitro. On target cells lacking intrinsic expression of specific receptor alpha subunits cytokines of the IL-6 family only act in the presence of their specific agonistic soluble receptors. Here, we report the construction and expression of a CNTF/soluble CNTF-receptor (sCNTF-R) fusion protein (Hyper-CNTF) with enhanced biological activity on cells expressing gp130 and leukemia inhibitory factor receptor (LIF-R), but not membrane-bound CNTF-R.

View Article and Find Full Text PDF

Ciliary neurotrophic factor (CNTF) inhibits the production of tumor necrosis factor (TNF) in lipopolysaccharide (LPS)-treated mice and protects against LPS lethality when coadministered with its soluble receptor (sCNTFR alpha). Both of these activities are abolished in adrenalectomized (ADX) mice. LPS-induced pulmonary polymorphonuclear neutrophil (PMN) infiltration and nitric oxide (NO) production were also inhibited by CNTF + sCNTFR alpha but not by CNTF alone.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!