We studied the effect of 1,25-dihydroxyvitamin D3 (1,25(OH)2D3) on organ cultures of transgenic mouse calvariae containing segments of the Col1a1 promoter extending to -3518, -2297, -1997, -1794, -1763, and -1719 bp upstream of the transcription start site fused to the chloramphenicol acetyltransferase (CAT) reporter gene. 1,25(OH)2D3 had a dose-dependent inhibitory effect on the expression of the -3518 bp promoter construct (ColCAT3.6), with maximal inhibition of about 50% at 10 nM. This level of inhibition was consistent with the previously observed effect on the endogenous Col1a1 gene in bone cell models. All of the shorter constructs were also inhibited by 10 nM 1,25(OH)2D3, suggesting that the sequences required for 1, 25(OH)2D3 inhibition are downstream of -1719 bp. The inhibitory effect of 1,25(OH)2D3 on transgene mRNA was maintained in the presence of the protein synthesis inhibitor cycloheximide, suggesting that the inhibitory effect on Col1a1 gene transcription does not require de novo protein synthesis. We also examined the in vivo effect of 1,25(OH)2D3 treatment of transgenic mice on ColCAT activity, and found that 48 h treatment caused a dose-dependent inhibition of CAT activity in calvariae comparable to that observed in organ cultures. In conclusion, we demonstrated that 1,25(OH)2D3 inhibits Col1A1 promoter activity in transgenic mouse calvariae, both in vivo and in vitro. The results indicate that there is a 1, 25(OH)2D3 responsive element downstream of -1719 bp. The inhibitory effect does not require new protein synthesis.

Download full-text PDF

Source
http://dx.doi.org/10.1016/s0167-4781(98)00079-7DOI Listing

Publication Analysis

Top Keywords

col1a1 promoter
12
protein synthesis
12
transgenic mice
8
organ cultures
8
transgenic mouse
8
mouse calvariae
8
col1a1 gene
8
downstream -1719
8
-1719 inhibitory
8
125oh2d3
6

Similar Publications

Objectives: This study aimed to comprehensively investigate the molecular landscape of gastric cancer (GC) by integrating various bioinformatics tools and experimental validations.

Methodology: GSE79973 dataset, limma package, STRING, UALCAN, GEPIA, OncoDB, cBioPortal, DAVID, TISIDB, Gene Set Cancer Analysis (GSCA), tissue samples, RT-qPCR, and cell proliferation assay were employed in this study.

Results: Analysis of the GSE79973 dataset identified 300 differentially expressed genes (DEGs), from which COL1A1, COL1A2, CHN1, and FN1 emerged as pivotal hub genes using protein-protein interaction network analysis.

View Article and Find Full Text PDF

Curcumin Alleviates Arecoline-induced Oral Submucous Fibrosis via the FOSL1/MAPK8 Axis.

Cell Biochem Biophys

December 2024

Department of Periodontal Mucosa, Changsha Stomatological Hospital, Changsha, Hunan, 410004, P.R. China.

Oral submucous fibrosis (OSF) is a precancerous lesion of the oral cavity. Areca nut consumption can cause OSF through sustained activation of buccal mucosal fibroblasts (BMFs). This study explored the effect of curcumin on arecoline-induced BMF activation and its mechanism of action.

View Article and Find Full Text PDF

Intrauterine adhesion (IUA) is the second most common cause of secondary infertility in women and can also lead to menstrual abnormalities and multiple adverse pregnancy outcomes. Therefore, elucidating the mechanism of its development is crucial for the prevention and treatment of IUA. This study will investigate the function and mechanism of forkhead box P1 (FOXP1)/DNA methyltransferase 1 (DNMT1)/unc-51-like autophagy activating kinase 1 (ULK1) in IUA.

View Article and Find Full Text PDF

Rheumatoid arthritis (RA) is a long-term autoimmune condition marked by persistent inflammation of the joints and various systemic complications, including endothelial dysfunction, atherosclerosis, and pulmonary fibrosis. Oxidative stress is a key contributor to the pathogenesis of RA, potentially exacerbating vascular damage and promoting pro-angiogenic and profibrotic processes. This study aims to investigate the effects of sera from RA patients on human umbilical vein endothelial cells (HUVECs), focusing on the induction of oxidative stress, endothelial cell proliferation, migration, and collagen type I synthesis.

View Article and Find Full Text PDF
Article Synopsis
  • Liver fibrosis is a significant factor in liver disease progression, but effective drugs to treat it are lacking.
  • Researchers developed 32 new compounds based on aspartic acid, with 22 being unique, and tested their ability to inhibit liver fibrosis.
  • Four compounds showed impressive inhibition rates, and two were effective in reducing key fibrosis markers and inflammation through a specific signaling pathway, paving the way for new treatments.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!