Localized changes in apoplastic and cytoplasmic pH are associated with root hair development in Arabidopsis thaliana.

Development

Department of Biology, The Pennsylvania State University, University Park, PA 16802, USA.

Published: August 1998

Morphogenesis in plants is characterized by highly regulated cell enlargement. However, the mechanisms controlling and localizing regions of growth remain essentially unknown. Root hair formation involves the induction of a localized cell expansion in the lateral wall of a root epidermal cell. This expanded region then enters a second phase of localized growth called tip growth. Root hair formation therefore provides a model in which to study the cellular events involved in regulating localized growth in plants. Confocal ratio imaging of the pH of the cell wall revealed an acidification at the root hair initiation site. This acidification was present from the first morphological indications of localized growth, but not before, and was maintained to the point where the process of root hair initiation ceased and tip growth began. Preventing the wall acidification with pH buffers arrested the initiation process but growth resumed when the wall was returned to an acidic pH. Cytoplasmic pH was found to be elevated from approximately 7.3 to 7. 7 at the initiation site, and this elevation coincided with the acidification of the wall. Preventing the localized increase in cytoplasmic pH with 10 mM butyrate however did not inhibit either the wall acidification or the initiation process. In contrast, there was no detectable gradient in pH associated with the apex of tip growing root hairs, but both elevated apoplastic pH and butyrate treatment irreversibly inhibited the tip growth process. Thus the processes of tip growth and initiation of root hairs show differences in their pH requirements. These results highlight the role of localized control of apoplastic pH in the control of cell architecture and morphogenesis in plants.

Download full-text PDF

Source
http://dx.doi.org/10.1242/dev.125.15.2925DOI Listing

Publication Analysis

Top Keywords

root hair
20
localized growth
12
growth
9
root
8
morphogenesis plants
8
hair formation
8
hair initiation
8
initiation site
8
wall acidification
8
initiation process
8

Similar Publications

Spider Fungi: New species of and in the aerial rhizomorph web-maker guild in Amazonia.

Fungal Syst Evol

December 2024

Programa de Pós-graduação em Botânica - DIPO 2, Instituto Nacional de Pesquisas da Amazônia - Inpa, Av. André Araújo 2936, 69067-375, Manaus, AM, Brazil.

Rhizomorphs are hair- or wire-like melanized structures with structural differentiation analogous to plant roots that help fungi spread over an area and find food resources. Some species of multiple groups of the and the produce different types of rhizomorphs. In the , the structures are largely found in , particularly in the , , and .

View Article and Find Full Text PDF

ERF114/115/109 are essential for jasmonate-repressed non-canonical JAZ8 activity in JA signaling.

Cell Rep

January 2025

The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, Shandong Key Laboratory of Precision Molecular Crop Design and Breeding, School of Life Science, Shandong University, Qingdao, Shandong 266237, China. Electronic address:

Jasmonate (JA), a key plant hormone, regulates various aspects of plant development and stress responses, primarily through the degradation of canonical jasmonate-ZIM domain (JAZ) proteins by the SCF complex. While JAZ8, a non-canonical JAZ protein lacking the degron signal, has been shown to repress JA responses, the mechanism by which JA inhibits JAZ8 activity remains unclear. Here, we demonstrate that Arabidopsis ethylene response factor 114 (ERF114), ERF115, and ERF109 regulate JA signaling through interacting with JAZ8.

View Article and Find Full Text PDF

C-low threshold mechanoreceptors (C-LTMRs) in animals (termed C-tactile (CT) fibres in humans) are a subgroup of C-fibre primary afferents, which innervate hairy skin and respond to low-threshold punctate indentations and brush stimuli. These afferents respond to gentle touch stimuli and are implicated in mediating pleasant/affective touch. These afferents have traditionally been studied using low-throughput, technically challenging approaches, including microneurography in humans and teased fibre electrophysiology in other mammals.

View Article and Find Full Text PDF

Cyclic nucleotide-gated channel 5 (CNGC5), CNGC6, and CNGC9 (CNGC5/6/9 for simplicity) control Arabidopsis root hair (RH) growth by mediating the influx of external Ca to establish and maintain a sharp cytosolic Ca gradient at RH tips. However, the underlying mechanisms for the regulation of CNGCs remain unknown. We report here that calcium dependent protein kinase 1 (CPK1) directly activates CNGC5/6/9 to promote Arabidopsis RH growth.

View Article and Find Full Text PDF

Natural phenylethanoid glycoside forsythoside A alleviates androgenetic alopecia by selectively inhibiting TRPV3 channels in mice.

Eur J Pharmacol

January 2025

Department of Pharmacology, School of Pharmacy, Qingdao Medical College of Qingdao University, Qingdao, China; Institute of Innovative Drugs, Qingdao University, Qingdao, China.

Dihydrotestosterone (DHT), an androgen derivate, is known to be a key factor involved in androgenetic alopecia. DHT suppresses the growth of outer root sheath cells and induces apoptosis of hair keratinocytes, thereby causing hair follicle miniaturization and hair regrowth inhibition. Forsythoside A, a natural substance derived from Forsythia suspensa, has been shown to reduce DHT-induced apoptosis in human hair cells and suppress hair regrowth inhibition induced by DHT in mice.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!