A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

[A new method for imaging ventilation-distribution with 3Helium in magnetic resonance tomography]. | LitMetric

Background: Conventional 1H-MRI of the lung is restricted by susceptibility effects and low proton density: Recently, imaging of lung ventilation in MRI has become feasible using hyperpolarised inert gases with a spin of I = 1/2, such as 3He and 129Xe, as inhalative "contrast agents". New technical developments, preclinical and clinical application of this method are described.

Materials And Methods: With optical laser pumping high polarisation rates can be achieved, resulting in a high signal-to-noise ratio (S/N). A dedicated application system allows accurate administration of 3He boli at different time points during inspiration. Thus, dynamic ventilation imaging becomes possible. Prerequisites for this method include a dedicated coil as well as a spectroscopy option at the MRI system. Fast sequences and low flip angles are employed to comply with the relaxation of hyperpolarise 3He in vivo.

Results: Overall homogeneous signal intensity (SI) represents physiological conditions. Obstructive lung disease is associated with generalised or localised signal inhomogeneity. Different time constants of specific lung regions are probably responsible for this kind of inhomogeneous inspiratory distribution of ventilation. Tumours show a clear ventilation deficit, correlating with non-ventilated lung areas.

Conclusion: 3He MRI is a promising new modality for the evaluation of ventilation distribution under different pathological conditions. This may include obstructive lung disease and assessment of ventilation distribution before and after thoracic surgery. Furthermore, evaluation of patients with acute lung failure and validation of ventilator settings in anaesthesia may be performed.

Download full-text PDF

Source

Publication Analysis

Top Keywords

obstructive lung
8
lung disease
8
ventilation distribution
8
lung
7
ventilation
6
method imaging
4
imaging ventilation-distribution
4
ventilation-distribution 3helium
4
3helium magnetic
4
magnetic resonance
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!