Becker muscular dystrophy with bundle branch reentry ventricular tachycardia.

J Cardiovasc Electrophysiol

Department of Clinical Cardiac Electrophysiology, Marquette General Hospital, Michigan, USA.

Published: June 1998

This report describes a case of Becker muscular dystrophy presenting with recurrent symptomatic wide complex tachycardia. Electrophysiologic testing demonstrated the mechanism to be bundle branch reentry ventricular tachycardia. It is important to consider this potential mechanism in patients with ventricular arrhythmias who have this particular clinical entity, since radiofrequency catheter ablation can represent a curative treatment.

Download full-text PDF

Source
http://dx.doi.org/10.1111/j.1540-8167.1998.tb00949.xDOI Listing

Publication Analysis

Top Keywords

becker muscular
8
muscular dystrophy
8
bundle branch
8
branch reentry
8
reentry ventricular
8
ventricular tachycardia
8
dystrophy bundle
4
tachycardia report
4
report describes
4
describes case
4

Similar Publications

Muscular dystrophies (MD) are a group of hereditary diseases marked by progressive muscle loss, leading to weakness and degeneration of skeletal muscles. These conditions often result from structural defects in the Dystrophin-Glycoprotein Complex (DGC), as seen in Duchenne Muscular Dystrophy (DMD) and Becker Muscular Dystrophy (BMD). Since MDs currently have no cure, research has focused on identifying potential therapeutic targets to improve patients' quality of life.

View Article and Find Full Text PDF

AI-Powered Neurogenetics: Supporting Patient's Evaluation with Chatbot.

Genes (Basel)

December 2024

Genomic Medicine Laboratory UILDM, IRCCS Santa Lucia Foundation, 00179 Rome, Italy.

Background/objectives: Artificial intelligence and large language models like ChatGPT and Google's Gemini are promising tools with remarkable potential to assist healthcare professionals. This study explores ChatGPT and Gemini's potential utility in assisting clinicians during the first evaluation of patients with suspected neurogenetic disorders.

Methods: By analyzing the model's performance in identifying relevant clinical features, suggesting differential diagnoses, and providing insights into possible genetic testing, this research seeks to determine whether these AI tools could serve as a valuable adjunct in neurogenetic assessments.

View Article and Find Full Text PDF

Facioscapulohumeral muscular dystrophy type 1 (FSHD1) and Becker muscular dystrophy (BMD) are distinct disorders caused by different genetic variations and exhibiting different inheritance patterns. The co-occurrence of both conditions within the same family is rare. In this case report, the proband was a 10 year-old boy who presented with eye and mouth orbicular muscles, shoulder and proximal upper and lower limbs weakness.

View Article and Find Full Text PDF

Objective: The staircase phenomenon, which refers to the increases in the force of contraction with repetitive stimulation of the muscle, has been studied for many years, but the method is difficult and not widely used. Our objective was to evaluate the staircase phenomenon in skeletal muscle using a piezoelectric sensor.

Methods: Thirty-five subjects without neuromuscular diseases (normal controls), 11 patients with Becker muscular dystrophy (BMD), and 19 patients with myotonic dystrophy type 1 (MyD) were studied.

View Article and Find Full Text PDF

For individuals with Duchenne or Becker muscular dystrophy (DMD and BMD, respectively), transitioning to adulthood presents significant challenges. Although considerable attention has been given to facilitating medical transitions due to the complexity of these conditions, less focus has been placed on other aspects of the transition, such as achieving independence. This study assessed the transition needs of people with DMD or BMD, exploring various domains including health, education, employment, living arrangements, transportation, daily activities, and independent personal life.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!