AI Article Synopsis

  • A new DNA vaccine for dengue type 2 has been shown to generate strong antibody responses in mice, incorporating genes from the DEN 2 New Guinea C strain.
  • The addition of immuno-stimulatory CpG DNA motifs enhanced the immune response, making a lower vaccine dose effective.
  • In tests, 60% of mice given the DNA vaccine with CpG survived a lethal challenge, significantly better than the 10% survival rate in the control group, highlighting the potential of this vaccination strategy.

Article Abstract

A recently described DNA vaccine for dengue (DEN) type 2 was shown to elicit high levels of neutralizing antibodies in mice. The vaccine candidate consists of the PreM and 92% of the envelope genes of DEN 2 New Guinea C strain. We further evaluated this DNA vaccine candidate by examining the effect of immuno-stimulatory CpG DNA motifs on antibody response and by studying the protective efficacy of the vaccine. The results showed that CpG motifs present in pUC 19 significantly improved the antibody response to a suboptimal dose of 3.1 micrograms of the DEN DNA vaccine. In a lethal mouse intracerebral challenge model, the vaccine provided a significant level of protection. Sixty percent of the mice immunized with the DEN DNA vaccine plus pUC 19 survived the challenge compared to only 10% in the control group that received vector plus pUC. These studies illustrate that nucleic acid immunization is a viable approach to developing a DEN vaccine and that immuno-stimulatory CpG DNA motifs can be used to lower the minimum dose required to produce an antibody response.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s007050050348DOI Listing

Publication Analysis

Top Keywords

dna vaccine
20
antibody response
12
vaccine
9
protective efficacy
8
motifs antibody
8
vaccine candidate
8
immuno-stimulatory cpg
8
cpg dna
8
dna motifs
8
den dna
8

Similar Publications

Background: To develop an effective vaccine against Plasmodium vivax, the most widely dispersed human malaria parasite, it is critical to understand how coinfections with other pathogens could impact malaria-specific immune response. A recent conceptual study proposed that Epstein-Barr virus (EBV), a highly prevalent human herpesvirus that establishes lifelong persistent infection, may influence P. vivax antibody responses.

View Article and Find Full Text PDF

Hepatic ischemia-reperfusion (I/R) injury frequently occurs during the perioperative phase of liver surgery. Inappropriate activation of STING signaling can trigger excessive inflammation response to aggravate hepatic I/R injury. Dimethyl fumarate (DMF) is an FDA-approved immunomodulatory drug used to treat multiple sclerosis and psoriasis due to its notable anti-inflammation properties.

View Article and Find Full Text PDF

Progress towards achieving global elimination of hepatitis B virus (HBV) by 2030 remains unsatisfactory. Prevention of mother to child transmission is crucial but current Clinical Practice Guidelines (CPGs) gave diverse recommendations, creating confusion and leading to significant challenges in the practical implementation across various regions owing to global inequity. We reviewed 47 CPGs on the management of hepatitis B during pregnancy against twelve important clinical questions.

View Article and Find Full Text PDF

Background Tuberculosis (TB) remains a major cause of global morbidity and mortality. Efforts to control TB are hampered by the lengthy and cumbersome treatment required to eradicate the infection. Bacterial persistence during exposure to bactericidal antibiotics is at least partially mediated by the bacterial stringent response enzyme, Rel .

View Article and Find Full Text PDF

Mechanistic models of humoral kinetics following COVID-19 vaccination.

J R Soc Interface

January 2025

Population Health Sciences, Bristol Medical School, University of Bristol, Oakfield Grove, Bristol, BS8 2BN, UK.

COVID-19 vaccine programmes must account for variable immune responses and waning protection. Existing descriptions of antibody responses to COVID-19 vaccination convey limited information about the mechanisms of antibody production and maintenance. We describe antibody dynamics after COVID-19 vaccination with two biologically motivated mathematical models.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!