The melibiose utilization system of Escherichia coli W3133, a derivative of K12, is nonfunctional between 37 and 42 degreesC. The reason for this temperature sensitivity was thought to be that the melibiose transporter (MelB) of W3133 cells was temperature-sensitive. A mutant W3133-2 has been isolated as a temperature-resistant strain that can utilize melibiose between 37 and 42 degreesC. However, we found that the melibiose transporter of the W3133-2 was still temperature-sensitive. Half-life activities of the melibiose transporter at 37 degreesC (or 40 degreesC) in both E. coli W3133 and W3133-2 were exactly the same. Furthermore, we found that the nucleotide sequence of coding region of the melB structural gene (the second gene of the melibiose operon) of W3133-2 was exactly the same as that of W3133. Activity of alpha-galactosidase (product of the first gene, melA, of the melibiose operon) of W3133 cells grown at 40 degreesC was very low, although that of W3133-2 cells grown at 40 degreesC was high. These observations suggested that expression of the melibiose operon in W3133 is also temperature-sensitive. In fact, we found that the expression in W3133 cells was temperature-sensitive, while that in W3133-2 cells was temperature-resistant, by analyzing mRNA levels using the Northern blot method. Furthermore, we identified mutations in the promoter region of the melibiose operon of W3133-2 that resulted in the elongation of an 18 nucleotide inverted repeat sequence to a 28-nucleotide repeat sequence present immediately upstream of the -35 region. This may stabilize a possible stem structure due to the inverted repeat at 37-42 degreesC.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1074/jbc.273.27.16860 | DOI Listing |
J Clin Microbiol
January 2022
Université de Paris, IAME, UMR 1137, INSERM, Paris, France.
Enterohemorrhagic Escherichia coli (EHEC) O80:H2, belonging to sequence type ST301, is among the main causes of hemolytic and uremic syndrome in Europe, a major concern in young children. Aside from the usual intimin and Shiga toxin virulence factors (VFs), this emerging serotype possesses a mosaic plasmid combining extra-intestinal VF- and antibiotic resistance-encoding genes. This hybrid pathotype can be involved in invasive infections, a rare occurrence in EHEC infections.
View Article and Find Full Text PDFPoult Sci
April 2021
Department of Pharmaceutical Microbiology, Medical University in Lublin, 20-093 Lublin, Poland.
Bacterial infections of yolk sacs contribute to increased mortality of chicks, chronic infections during their rearing, or increased selection in the flock, which in turn leads to high economic losses in poultry production worldwide. The aim of this study was a phenotypic and genotypic characterization of enterococci isolated from yolk sac infections (YSI) of broiler chickens from Poland and the Netherlands. Biochemical, matrix-assisted laser desorption/ionization (MALDI)-time-of-flight (TOF) MS, and rpoA gene sequencing identification was performed.
View Article and Find Full Text PDFJ Bacteriol
August 2019
Institut für Industrielle Genetik, Universität Stuttgart, Stuttgart, Germany.
is a heterotrophic soil bacterium that hydrolyzes different polysaccharides mainly found in the decomposed plants. These carbohydrates are mainly cellulose, hemicellulose, and the raffinose family of oligosaccharides (RFOs). RFOs are soluble α-galactosides, such as raffinose, stachyose, and verbascose, that rank second only after sucrose in abundance.
View Article and Find Full Text PDFSci Rep
April 2017
CAS Key Laboratory of Microbial Physiological and Metabolic Engineering, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China.
In this study the repressor of Escherichia coli lac operon, LacI, has been engineered for altered effector specificity. A LacI saturation mutagenesis library was subjected to Fluorescence Activated Cell Sorting (FACS) dual screening. Mutant LacI-L5 was selected and it is specifically induced by lactulose but not by other disaccharides tested (lactose, epilactose, maltose, sucrose, cellobiose and melibiose).
View Article and Find Full Text PDFJ Bacteriol
May 2017
Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology Delhi, Hauz Khas, New Delhi, India
The (lactose) operon (which processes β-galactosides) and the (melibiose) operon (which processes α-galactosides) of have a close historical connection. A number of shared substrates and effectors of the permeases and regulatory proteins have been reported over the years. Until now, β-thiogalactosides like TMG (methyl-β-d-thiogalactopyranoside) and IPTG (isopropyl-β-d-thiogalactopyranoside) have not generally been considered to be inducers of the operon.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!