The glycolytic enzyme phosphoglycerate kinase (PGK) catalyzes phosphoryl transfer between 1,3-bis-phosphoglycerate and ADP to form 3-phosphoglycerate and ATP. During catalysis, a major hinge bending motion occurs which brings the N and C-terminal enzyme domains and their bound substrates together and in-line for phosphoryl transfer. We have crystallized Trypanosoma brucei PGK in the presence of the bisubstrate analog, adenylyl 1,1,5,5-tetrafluoropentane-1, 5-bisphosphonate, and solved the structure of this complex in two different crystal forms at 1.6 and 2.0 A resolution, obtained from PEG 8000 and ammonium phosphate solutions, respectively. These high resolution structures of PGK:inhibitor complexes are of particular interest for drug design since Trypanosoma brucei, the causative agent of African sleeping sickness, relies on glycolysis as its sole energy source. In both structures, the inhibitor is bound in a fully extended conformation with its adenosine moiety assuming exactly the same position as in ADP:PGK complexes and with its 5' phosphonate group occupying part of the 1,3-bis-phosphoglycerate binding site. The bisubstrate analog forces PGK to assume a novel, "inhibited" conformation, intermediate in hinge angle between the native structures of open and closed form PGK. These structures of enzyme-inhibitor complexes demonstrate that PGK has two distinct hinge points that can each be independently activated. In the "PEG" structure, the C-terminal hinge is partially activated while the N-terminal hinge point remains in an open state. In the "phosphate" structure, closure of the N-terminal hinge point is also evident. Finally and most unexpectedly, both complex structures also contain a 3 A shift of a helix that lies outside the flexible hinge region. We propose that a transient shift of this helix is a required element of PGK hinge closure during catalysis.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1006/jmbi.1998.1835 | DOI Listing |
Biochemistry
January 2025
Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, United States.
1-Deoxy-d-xylulose 5-phosphate synthase (DXPS) is a unique thiamin diphosphate (ThDP)-dependent enzyme that catalyzes the formation of DXP, a branchpoint metabolite required for the biosynthesis of vitamins and isoprenoids in bacterial pathogens. DXPS has relaxed substrate specificity and utilizes a gated mechanism, equipping DXPS to sense and respond to diverse substrates. We speculate that pathogens utilize this distinct gated mechanism in different ways to support metabolic adaptation during infection.
View Article and Find Full Text PDFBioorg Med Chem Lett
November 2024
Department of Chemistry, University of Nebraska at Kearney, Kearney, NE 69949, USA. Electronic address:
Arylalkylamine N-acetyltransferase (AANAT) catalyzes the rate-limiting step in melatonin synthesis and is a potential target for disorders involving melatonin overproduction, such as seasonal affective disorder. Previously described AANAT inhibitor bromoacetyltryptamine (BAT) and benzothiophenes analogs were reported to react with CoASH to form potent bisubstrate inhibitors through AANAT's alkyltransferase function, which is secondary to its role as an acetyltransferase. We replaced the bromoacetyl group in BAT with various Michael acceptors to mitigate possible off-target activity of its bromoacetyl group.
View Article and Find Full Text PDFBioorg Med Chem Lett
November 2024
Center for Structural Biology, National Cancer Institute, Frederick, MD 21702, USA.
6-Hydroxymethyl-7,8-dihydropterin pyrophosphokinase (HPPK) is a key enzyme in the folate biosynthesis pathway. It catalyzes the pyrophosphoryl transfer from ATP to 6-hydroxymethyl-7,8-dihydropterin (HP). HPPK is essential for microorganisms but is absent in mammals.
View Article and Find Full Text PDFRSC Med Chem
March 2024
IBMM, University of Montpellier CNRS, ENSCM Montpellier France
RNA cap methylations have been shown to be crucial for the life cycle, replication, and infection of ssRNA viruses, as well as for evading the host's innate immune system. Viral methyltransferases (MTases) therefore represent an attractive target for the development of compounds as tools and inhibitors. In coronaviruses, 7-methyltransferase function is localized in nsp14, which has become an increasingly important therapeutic target with the COVID-19 pandemic.
View Article and Find Full Text PDFACS Infect Dis
April 2024
Department of Pharmacology and Molecular Sciences, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, United States.
New antimicrobial strategies are needed to address pathogen resistance to currently used antibiotics. Bacterial central metabolism is a promising target space for the development of agents that selectively target bacterial pathogens. 1-Deoxy-d-xylulose 5-phosphate synthase (DXPS) converts pyruvate and d-glyceraldehyde 3-phosphate (d-GAP) to DXP, which is required for synthesis of essential vitamins and isoprenoids in bacterial pathogens.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!