Samples of 80 S ribosomes from rabbit reticulocytes were subjected to electron cryomicroscopy combined with angular reconstitution. A three-dimensional reconstruction at 21 A resolution was obtained, which was compared with the corresponding (previously published) reconstruction of Escherichia coli 70 S ribosomes carrying tRNAs at the A and P sites. In the region of the intersubunit cavity, the principal features observed in the 70 S ribosome (such as the L1 protuberance, the central protuberance and A site finger in the large subunit) could all be clearly identified in the 80 S particle. On the other hand, significant additional features were observed in the 80 S ribosomes on the solvent sides and lower regions of both subunits. In the case of the small (40 S) subunit, the most prominent additions are two extensions at the base of the particle. By comparing the secondary structure of the rabbit 18 S rRNA with our model for the three-dimensional arrangement of E. coli 16 S rRNA, these two extensions could be correlated with the rabbit expansion segments (each totalling ca 170 bases) in the regions of helix 21, and of helices 8, 9 and 44, respectively. A similar comparison of the secondary structures of mammalian 28 S rRNA and E. coli 23 S rRNA, combined with preliminary modelling studies on the 23 S rRNA within the 50 S subunit, enabled the additional features in the 60 S subunit to be sub-divided into five groups. The first (corresponding to a total of ca 335 extra bases in helices 45, 98 and 101) is located on the solvent side of the 60 S subunit, close to the L7/L12 area. The second (820 bases in helices 25 and 38) is centrally placed on the solvent side of the subunit, whereas the third group (totaling 225 bases in helices 18/19, 27/29, 52 and 54) lies towards the L1 side of the subunit. The fourth feature (80 bases in helices 78 and 79) lies within or close to the L1 protuberance itself, and the fifth (560 bases in helix 63) is located underneath the L1 protuberance on the interface side of the 60 S subunit.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1006/jmbi.1998.1804 | DOI Listing |
Langmuir
December 2024
Department of Chemistry and Biochemistry, University of California San Diego, 9500 Gilman Drive, La Jolla, California 92093, United States.
J Phys Chem B
January 2025
Department of Chemistry, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka 560-0043, Japan.
Proton-pumping rhodopsins, which consist of seven transmembrane helices and have a retinal chromophore bound to a lysine side chain through a Schiff base linkage, offer valuable insights for developing unidirectional ion transporters. Despite identical overall structures and membrane topologies of outward and inward proton-pumping rhodopsins, these proteins transport protons in opposing directions, suggesting a rational mechanism that enables protons to move in different directions within similar protein structures. In the present study, we clarified the chromophore structures in early intermediates of inward and outward proton-pumping rhodopsins.
View Article and Find Full Text PDFInsect Biochem Mol Biol
December 2024
Department of Biology, Duke University, Durham, NC, 27708, USA. Electronic address:
Pyrethroid insecticides exert their toxic action by prolonging the opening of insect voltage-gated sodium channels, resulting in the characteristic tail current during membrane repolarization in voltage clamp experiments. Permethrin (PMT) and deltamethrin (DMT), representative type I and type II pyrethroids, respectively, are predicted to bind to two lipid-exposed pyrethroid receptor sites, PyR1 and PyR2, at the lipid-exposed interfaces of repeats II/III and I/II, respectively. Transfluthrin (TF), a volatile type I pyrethroid and mosquito repellent, has received increased attention in the global combat of vector-borne human diseases.
View Article and Find Full Text PDFHerein, we report the synthesis, characterization, supramolecular gelation and multiple applications of 6-aminocoumarin-derived Schiff bases 1 and 2. Both Schiff bases underwent gelation in DMF-HO (2 : 1, v/v), DMSO-HO (2 : 1, v/v) and dioxane-HO (2 : 1, v/v) involving weak forces. Furthermore, the gels were stable and exhibited good viscoelastic properties.
View Article and Find Full Text PDFChemphyschem
October 2024
Centro Universitario de la Defensa, Academia General del Aire, Universidad Politécnica de Cartagena, C/Coronel López Peña S/N, Santiago de La Ribera, 30720, Murcia, Spain.
Why are DNA bases stacked in a double helix structure? We combined three theoretical approaches to demonstrate how one core concept derived from quantum mechanics (Pauli repulsion) annihilates the contribution of dispersion to the π-π stacking. The helical architecture is governed by a combination of exchange and electrostatic forces, a result that is interpreted from both a computational and a biological perspective.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!