In experiments in dogs on the metabolic effects of inhalation anaesthetics, we noticed that in the presence of desflurane, oxygen uptake (VO2) measured with the Deltatracll metabolic monitor seemingly increased whereas it decreased when determined independently by the Fick principle. This difference remained even after correction for changes in gas concentration on addition of an inhalation anaesthetic. Therefore, we suspected that desflurane interferes with the measurement of gas concentrations. Using different precision gases, we found that desflurane disturbed both the paramagnetic oxygen sensor and the infrared carbon dioxide detector so that the measured oxygen (when FIO2 was > 0.21) and carbon dioxide concentrations were greater than expected. These errors multiply in the computing process of oxygen uptake by the DeltatracII. When the DeltatracII is to be used during inhalation anaesthesia, its results should be corrected for the presence of an anaesthetic gas. More importantly, corrections must also be made for measurement errors of the oxygen and carbon dioxide sensors, unless the device has been equipped with a modified (nickel membrane) oxygen sensor insensitive to the presence of volatile agents.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1093/bja/80.4.521 | DOI Listing |
Curr Biol
January 2025
Molecular Systems Biology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, 9747 AG Groningen, the Netherlands. Electronic address:
Yeasts are a diverse group of unicellular fungi that have developed a wide array of phenotypes and traits over 400 million years of evolution. However, we still lack an understanding of the biological principles governing the range of cell morphologies, metabolic modes, and reproductive strategies yeasts display. In this study, we explored the relationship between cell morphology and metabolism in sixteen yeast strains across eleven species.
View Article and Find Full Text PDFSci Total Environ
January 2025
Program in Environmental and Polymer Engineering, Graduate School of INHA University, 100 Inha-ro, Michuhol-gu, Incheon 22212, Republic of Korea; Department of Environmental Engineering, INHA University, 100 Inha-ro, Michuhol-gu, Incheon 22212, Republic of Korea. Electronic address:
The increasing CO concentration in the atmosphere has substantial impacts on the global temperature. For energy sustainability and minimization of the effects of global warming, an approach to understand CO capturing and a carbon neutral culture is extremely essential in the present circumstances. The CO emission from vehicles and industries can be minimized using energy cost-effective techniques and can be converted more selectively into reusable fuels via thermochemical, electrochemical, photochemical, photocatalytic, electrocatalytic, biological and inorganic carbonate-based approaches.
View Article and Find Full Text PDFNat Chem Biol
January 2025
Department of Microbiology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia.
Diverse bacteria and archaea use atmospheric CO as an energy source for long-term survival. Bacteria use [MoCu]-CO dehydrogenases (Mo-CODH) to convert atmospheric CO to carbon dioxide, transferring the obtained electrons to the aerobic respiratory chain. However, it is unknown how these enzymes oxidize CO at low concentrations and interact with the respiratory chain.
View Article and Find Full Text PDFEnviron Sci Pollut Res Int
January 2025
Department of Chemical Engineering, Indian Institute of Technology Guwahati, Guwahati, 781039, Assam, India.
The adoption of carbon capture, utilization, and storage (CCUS) technology is increasingly prevalent, driven by the global initiative to conserve energy and reduce emissions. Nevertheless, CCUS has the potential to induce corrosion in equipment, particularly in high-pressure environments containing carbon dioxide (CO). Therefore, anti-corrosion protection is necessary for the metal utilized for CO production and storage equipment.
View Article and Find Full Text PDFCommun Biol
January 2025
Marine Science Institute/Department of Ecology, Evolution and Marine Biology, University of California, Santa Barbara, CA, USA.
Oxygen consumption by oceanic microbes can predict respiration (CO production) but requires an assumed respiratory quotient (RQ; ΔO/ΔCO). Measured apparent RQs (ARQs) can be impacted by various processes, including nitrification and changes in dissolved organic matter (DOM) composition, leading to discrepancies between ARQ and actual RQ. In DOM remineralization experiments conducted in the eastern North Atlantic Ocean, ARQs averaged 1.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!