We report the first detailed comparison of two immunity proteins which, in conjunction with recent protein engineering data, begins to explain how these structurally similar proteins are able to bind and inhibit the endonuclease domain of colicin E9 (E9 DNase) with affinities that differ by 12 orders of magnitude. In the present work, we have determined the X-ray structure of the Escherichia coli colicin E7 immunity protein Im7 to 2.0 A resolution by molecular replacement, using as a trial model the recently determined NMR solution structure of Im9. Whereas the two proteins adopt similar four-helix structures, subtle structural differences, in particular involving a conserved tyrosine residue critical for E9 DNase binding, and the identity of key residues in the specificity helix, lie at the heart of their markedly different ability to bind the E9 DNase. Two other crystal structures were reported recently for Im7; in one, Im7 was a monomer and was very similar to the structure reported here, whereas in the other it was a dimer to which functional significance was assigned. Since this previous work suggested that Im7 could exist either as a monomer or a dimer, we used analytical ultracentrifugation to investigate this question further. Under a variety of solution conditions, we found that Im7 only ever exists in solution as a monomer, even up to protein concentrations of 15 mg/ml, casting doubt on the functional significance of the crystallographically observed dimer. This work provides a structural framework with which we can understand immunity-protein specificity, and in addition we believe it to be the first successfully refined crystal structure solved by molecular replacement using an NMR trial model with less than 100% sequence identity.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1219571PMC
http://dx.doi.org/10.1042/bj3330183DOI Listing

Publication Analysis

Top Keywords

colicin immunity
8
immunity proteins
8
immunity-protein specificity
8
molecular replacement
8
trial model
8
functional significance
8
im7
6
structural comparison
4
comparison colicin
4
proteins
4

Similar Publications

Preparation of the immobilized α-adrenoceptor column by the ultra-high affinity protein pair CL7/Im7 and its application in drug-protein interaction analysis.

J Chromatogr B Analyt Technol Biomed Life Sci

January 2025

Northwest University Chang An Hospital, Faculty of Life Sciences and Medicine, Northwest University, Xi'an, Shaanxi 710069, China; Department of Clinical Pharmaceutics, Chang An District Hospital, Xi'an, Shaanxi 710118, China. Electronic address:

Immobilizing the target protein on a solid surface with controlled orientation, high specificity, and maintained activity is a proven strategy to enhance the stability of the protein. In this study, we employed an ultra-high affinity protein pair consisting of a mutant of colicin E7 Dnase and its corresponding inhibitor, immunity protein 7(Im7), to develop an immobilized α-adrenoceptor (α-AR) column. Briefly, we expressed α-AR fused with CL7 as a tag at its C-terminus in Escherichia coli cells.

View Article and Find Full Text PDF

The ApxIVA protein belongs to a distinct class of a "clip and link" activity of Repeat-in-ToXin (RTX) exoproteins. Along with the three other pore-forming RTX toxins (ApxI, ApxII and ApxIII), ApxIVA serves as a major virulence factor of Actinobacillus pleuropneumoniae, the causative agent of porcine pneumonia. The gene encoding ApxIVA is located on a bicistronic operon downstream of the orf1 gene and is expressed exclusively under in vivo conditions.

View Article and Find Full Text PDF

Rationale: Plasmids can play a major role in the survival of pathogenic bacteria. Plasmids are acquired through horizontal gene transfer resulting in their spread across various strains, species and genera of bacteria. Colicins are bacterial protein toxins expressed by plasmid genes and released against co-located bacterial competitors.

View Article and Find Full Text PDF

Multi-conflict islands are a widespread trend within Serratia spp.

Cell Rep

December 2024

Department of Microbial Sciences, School of Biosciences, University of Surrey, Guildford, Surrey, UK. Electronic address:

Bacteria carry numerous anti-phage systems in "defense islands" or hotspots. Recent studies have delineated the content and boundaries of these islands in various species, revealing instances of islands that encode additional factors, including antibiotic resistance genes, stress genes, type VI secretion system (T6SS)-dependent effectors, and virulence factors. Our study identifies three defense islands in the Serratia genus with a mixed cargo of anti-phage systems, virulence factors, and different types of anti-bacterial modules, revealing a widespread trend of co-accumulation that extends beyond T6SS-dependent effectors to colicins and contact-dependent inhibition systems.

View Article and Find Full Text PDF
Article Synopsis
  • The study investigates Guizhi Fuling Formula (GFF) and α-adrenergic receptors (α-AR) using a novel method involving Colicin L7 DNase (CL7) and its immune protein (Im7) for immobilizing α-AR to a column.
  • The immobilization resulted in a stable α-AR column, facilitating the screening of active compounds in GFF, leading to the identification of paeoniflorin, cinnamic acid, and paeonol.
  • Notably, cinnamic acid and paeonol bind to the same site on α-AR as the drug tamsulosin, demonstrating the potential of this method for rapid analysis of functional compounds from
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!