Previous studies in rats and humans have demonstrated that acetyl-CoA carboxylase alpha (ACC-alpha), the principal ACC isoenzyme in lipogenic tissues, is transcribed from two promoters, PI and PII, that operate in a tissue-specific fashion. Each promoter gives rise to ACC-alpha mRNA isoforms that differ in their 5' untranslated regions but essentially encode the same protein product. In the present study we demonstrate that such a pattern of promoter usage is evident in sheep tissues but in addition we have detected the expression of a novel ACC-alpha mRNA isoform that is expressed in a variety of tissues including kidney, lung, liver and mammary gland, where it is markedly induced during lactation. This novel transcript differs from the previously described ACC-alpha mRNA in that exon 5, the primary coding exon in both PI and PII transcripts, is replaced by a 424-nt sequence that seems to represent the 5' terminus of the mRNA. The 424-nt sequence encodes a 17-residue N-terminal region as the N-terminal residue in the deduced sequence is a methionine flanked by several in-frame stop codons. The 5' terminal 424 nt are present as a single exon, which we have termed exon 5A, in the sheep ACC-alpha gene and this is located approx. 15 kb downstream of exon 5 and 5 kb upstream of exon 6. A 1.5 kb HindIII-BglII fragment encompassing the 5' terminus and sequence immediately upstream of exon 5A demonstrates promoter activity when transiently transfected into HepG2 cells and HC11 mouse mammary cells and this is markedly enhanced when insulin is present in the culture medium. Promoter activity is also evident in primary sheep mammary epithelial cells. These results demonstrate the presence of a third promoter, PIII, in the ACC-alpha gene that results in the tissue-restricted expression of an ACC isoenzyme.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1219550 | PMC |
http://dx.doi.org/10.1042/bj3330017 | DOI Listing |
Sci Rep
January 2025
International Joint Research Laboratory for Recombinant Pharmaceutical Protein Expression System of Henan, Xinxiang Medical University, Xinxiang, China.
To meet the requirements of the biopharmaceutical industry, improving the yield of recombination therapeutic protein (RTP) from Chinese hamster ovary (CHO) cells is necessary. The human cytomegalovirus (CMV) promoter is widely used for RTP expression in CHO cells. To further improve RTP production, we truncated the human CMV intron and further evaluated the effect of four synthetic introns, including ctEF-1α first, EF-1α first, chimeric, and β-globin introns combined with the CMV promoter on recombinant expression levels in transient and stably recombinant CHO cells.
View Article and Find Full Text PDFNonsense-mediated decay (NMD) is a eukaryotic surveillance pathway that controls degradation of cytoplasmic transcripts with aberrant features. NMD-controlled RNA degradation acts to regulate a large fraction of the mRNA population. It has been implicated in cellular responses to infections and environmental stress, as well as in deregulation of tumor-promoting genes.
View Article and Find Full Text PDFJ Genet Genomics
January 2025
State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, College of Life Sciences, South China Agricultural University, Guangzhou, Guangdong 510642, China. Electronic address:
Increasing plant density is an effective strategy for enhancing crop yield per unit land area. A key architectural trait for crops adapting to high planting density is smaller leaf angle (LA). Previous studies have demonstrated that LG1, a SQUAMOSA BINDING PROTEIN (SBP) transcription factor, plays a critical role in LA establishment.
View Article and Find Full Text PDFJ Biol Chem
January 2025
Department of Biological Sciences, St. John's University, Queens, New York, USA. Electronic address:
One of the key events in DNA damage response (DDR) is activation of checkpoint kinases leading to activation of ribonucleotide reductase (RNR) and increased synthesis of deoxyribonucleotide triphosphates (dNTPs), required for DNA repair. Among other mechanisms, the activation of dNTP synthesis is driven by derepression of genes encoding RNR subunits RNR2, RNR3, and RNR4, following checkpoint activation and checkpoint kinase Dun1p-mediated phosphorylation and inactivation of transcriptional repressor Crt1p. We report here that in the absence of genotoxic stress during respiratory growth on nonfermentable carbon source acetate, inactivation of checkpoint kinases results in significant growth defect and alters transcriptional regulation of RNR2-4 genes and genes encoding enzymes of the tricarboxylic acid (TCA) and glyoxylate cycles and gluconeogenesis.
View Article and Find Full Text PDFPlant Physiol Biochem
January 2025
Key Laboratory of Resource Biology and Biotechnology in Western China (Ministry of Education), Shaanxi Provincial Key Laboratory of Biotechnology, College of Life Sciences, Northwest University, Xi'an, 710069, Shaanxi, People's Republic of China. Electronic address:
Point mutations were introduced into specific leucine (L) amino acids within the K domain of SHORT VEGETATIVE PHASE (SVP), and their effects on the SVP-AP1 interaction were assessed. Yeast two-hybrid experiments and β-galactosidase activity assays demonstrated that SVP maintained its capacity to interact with APETALA1 (AP1) despite point mutations at the 108th, 116th, 119th, and 127th leucine residues, where leucine was substituted with alanine (A). However, the mutation of the leucine residue at position 124 to alanine abolished the interaction between SVP and AP1 regardless of whether the mutation was singular or combined with others.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!