Tyrosine hydroxilase activity in discrete brain regions from prehepatic portal hypertensive rats.

Hepatogastroenterology

Catedra de Fisiopatologia, Facultad de Farmacia y Bioquimica, Universidad de Buenos Aires, Argentina.

Published: September 1998

Background/aims: Portal hypertension in patients and rat models are characterized by splanchnic and systemic hemodynamic alterations. Both the central and autonomic nervous systems are implicated in its pathophysiology. The aim of our research was to study the tyrosine hydroxylase activity and the rate limiting step in the biosynthesis of catecholamines in partial ligated portal hypertensive and in control rat brains.

Methodology: The following seven discrete brain regions were investigated: Subfornical Organ, Organum Vasculosum Lamina Terminalis, Median Eminence, Periventricular Nucleus, Area Postrema, Locus Coeruleus and Nucleus Tractus Solitarius.

Results: The enzyme activity showed a significant increment in six nuclei and a decrease in Area Postrema Nucleus when portal hypertensive rats were compared to controls.

Conclusions: These results suggest the participation of some discrete brain regions in the mechanism of hepatic portal hypertension under the present rat model.

Download full-text PDF

Source

Publication Analysis

Top Keywords

discrete brain
12
brain regions
12
portal hypertensive
12
hypertensive rats
8
portal hypertension
8
area postrema
8
portal
5
tyrosine hydroxilase
4
hydroxilase activity
4
activity discrete
4

Similar Publications

Dynamic planning in hierarchical active inference.

Neural Netw

January 2025

Institute of Cognitive Sciences and Technologies, National Research Council, Padova, Italy. Electronic address:

By dynamic planning, we refer to the ability of the human brain to infer and impose motor trajectories related to cognitive decisions. A recent paradigm, active inference, brings fundamental insights into the adaptation of biological organisms, constantly striving to minimize prediction errors to restrict themselves to life-compatible states. Over the past years, many studies have shown how human and animal behaviors could be explained in terms of active inference - either as discrete decision-making or continuous motor control - inspiring innovative solutions in robotics and artificial intelligence.

View Article and Find Full Text PDF

White-matter tracts play a pivotal role in transmitting sensory and motor information, facilitating interhemispheric communication and integrating different brain regions. Meanwhile, sensorimotor disturbance is a common symptom in patients with major depressive disorder (MDD). However, the role of aberrant sensorimotor white-matter system in MDD remains largely unknown.

View Article and Find Full Text PDF

In a visual inverted pendulum balancing task avoiding impending falls gets harder as we age.

Exp Brain Res

January 2025

Ashton Graybiel Spatial Orientation Laboratory, Brandeis University, MS 033, 415 South Street, Waltham, MA, 02453, USA.

Younger adults (YA) and older adults (OA) used a joystick to stabilize an unstable visual inverted pendulum (VIP) with a fundamental frequency (.27 Hz) of half that of bipedal human sway. Their task was to keep the VIP upright and to avoid ± 60° "fall" boundaries.

View Article and Find Full Text PDF

Asparagine-linked glycosylation (N-glycosylation) is a common co- and post-translational modification that refers to the addition of complex carbohydrates, called N-linked glycans (N-glycans), to asparagine residues within defined sequons of polypeptide acceptors. Some N-glycans can be modified by the addition of phosphate moieties to their monosaccharide residues, thus forming phospho-N-glycans (PNGs). The most prominent such carbohydrate modification is mannose-6-phosphate (M6P) which plays a well-established role in trafficking of acid hydrolases to lysosomes.

View Article and Find Full Text PDF

The brain can remarkably adapt its decision-making process to suit the dynamic environment and diverse aims and demands. The brain's flexibility can be classified into three categories: flexibility in choosing solutions, decision policies, and actions. We employ two experiments to explore flexibility in decision policy: a visual object categorization task and an auditory object categorization task.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!