In a previous study on the replication of Kunjin virus using immunoelectron microscopy (E. G. Westaway, J. M. Mackenzie, M. T. Kenney, M. K. Jones, and A. A. Khromykh, 1997, J. Virol. 71, 6650-6661), NS1 and NS3 were found associated with double-stranded RNA (dsRNA) within vesicle packets (VP) in infected Vero cells, suggesting that these induced membrane structures may be the cytoplasmic sites of RNA replication. NS2B and NS3 (comprising the virus-encoded protease) were colocalized within distinct paracrystalline (PC) or convoluted membranes (CM), also induced in the cytoplasm, suggesting that these membranes are the sites of proteolytic cleavage. In this study we found by immunofluorescence (IF) that the small hydrophobic nonstructural proteins NS2A and NS4A were located in discrete foci in the cytoplasm of infected cells at both 16 and 24 h postinfection, partially coincident with dsRNA foci. In cryosections of infected cells at 24 h, NS2A was located by immunogold labeling primarily within VP, associated with labeled dsRNA. NS2A fused to glutathione S-transferase (GST) bound strongly to the 3' untranslated region of Kunjin RNA and also to the proposed replicase components NS3 and NS5 in cell lysates. NS4A was localized by immunogold labeling within a majority of the virus-induced membranes, including VP, CM, and PC. GST-NS4A bound weakly to the 3' untranslated region of Kunjin RNA but was bound to NS4A strongly and to most of the other viral nonstructural proteins, including NS3 and NS5. Taken together the results indicate that the flavivirus replication complex includes NS2A and NS4A in the VP in addition to the previously identified NS1 and NS3.

Download full-text PDF

Source
http://dx.doi.org/10.1006/viro.1998.9156DOI Listing

Publication Analysis

Top Keywords

nonstructural proteins
12
ns2a ns4a
12
proteins ns2a
8
ns1 ns3
8
infected cells
8
immunogold labeling
8
untranslated region
8
region kunjin
8
kunjin rna
8
ns3 ns5
8

Similar Publications

Our objectives were to use a quantitative literature review to explore dietary and feed factors influencing apparent total-tract digestibility of dry matter (DMD), crude protein (CPD), neutral detergent fiber (NDFD), ether extract (EED), non-structural carbohydrates (NSCD), non-fiber carbohydrates (NFCD), and residual organic matter (rOMD) in equine diets, and to assess their contributions to digestible energy (DE) supplies. Data from 54 studies were modeled using linear mixed-effect regressions, with publication as a random effect to account for study variability. For each nutrient, five models were derived with explanatory variables including: dry matter intake (DMI; % BW/day) and DM (% as-fed), and dietary components (CP, organic matter, EE, NDF, acid detergent fiber, NSC, starch, and NFC as % of DM), and feed types (forage, non-forage fiber, legumes, cereal, and oil proportions).

View Article and Find Full Text PDF

Aims: The screening and diagnosis of dengue virus infection play a crucial role in controlling the epidemic of dengue fever, highlighting the urgent need for a highly sensitive, simple, and rapid laboratory testing method. This study aims to assess the clinical performance of MAGLUMI Denv NS1 in detecting dengue virus NS1 antigen.

Methods: A retrospective study was conducted to assess the sensitivity and specificity of MAGLUMI Denv NS1 using residual samples.

View Article and Find Full Text PDF

Bombyx mori bidensovirus (BmBDV), a significant pathogen in the sericulture industry, holds a unique taxonomic position due to its distinct segmented single-stranded DNA (ssDNA) genome and the presence of a self-encoding DNA polymerase. However, the functions of viral non-structural proteins, such as NS2, remain unknown. This protein is hypothesized to play a role in viral replication and pathogenesis.

View Article and Find Full Text PDF

Identifying Allosteric Small-Molecule Binding Sites of Inactive NS2B-NS3 Proteases of Pathogenic .

Viruses

December 2024

Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, La Jolla, San Diego, CA 92093-0657, USA.

Dengue, West Nile, Zika, Yellow fever, and Japanese encephalitis viruses persist as significant global health threats. The development of new therapeutic strategies based on inhibiting essential viral enzymes or viral-host protein interactions is problematic due to the fast mutation rate and rapid emergence of drug resistance. This study focuses on the NS2B-NS3 protease as a promising target for antiviral drug development.

View Article and Find Full Text PDF

Phylogenetic analysis and molecular structure of NS1 proteins of porcine parvovirus 5 isolates from Mexico.

Arch Virol

January 2025

Facultad de Estudios Superiores Cuautitlán, Departamento de Ciencias Biológicas, Universidad Nacional Autónoma de México (UNAM), Carretera Cuautitlán-Teoloyucan Km 2.5, Cuautitlán Izcalli, 54714, Estado de México, México.

Porcine parvovirus 5 (PPV5) is an unclassified member of the family Parvoviridae with no reported pathogenicity, although it is associated with multisystemic, reproductive, and respiratory diseases. Its open reading frame 1 (ORF1) encodes non-structural protein 1 (NS1), which is predicted to have helicase activity that is essential for viral replication. This protein contains a C-motif with an invariant asparagine residue that forms the core of the enzyme's active site, in conjunction with the Walker A and B motifs.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!