Mesorhizobium loti has been described as a microsymbiont of plants of the genus Lotus. Lipo-chitin oligosaccharides (LCOs), or Nod factors, produced by several representative M. loti strains all have similar structures. Using fast-atom-bombardment tandem mass spectrometry and NMR spectroscopy, we have now examined the LCOs from the type strain NZP2213 and observed a much greater variety of structures than has been described for the strains of M.loti studied previously. Interestingly, we have identified as the major LCO a structure that bears a fucose residue alpha-1,3-linked to the GlcNAc residue proximal to the nonreducing terminal GlcNAc residue. This is the first time, to our knowledge, that substitution on an internal GlcNAc residue of the LCO backbone has been observed. This novel LCO structure suggests the presence of a novel fucosyltransferase activity in strain NZP2213. Since the presence of this extra structure does not have the effect of broadening the host range, we suggest that the modification of the LCOs with a fucose residue linked to a nonterminal GlcNAc residue might provide protection against degradation by a particular host plant enzyme (e.g., a chitinase) or alternatively represents adaptation to a particular host-specific receptor. The action of the alpha-(1-->3) fucosyltransferase seems to reduce significantly the activity of NodS, the methyltransferase involved in the addition of the N-methyl substituent to the nonreducing terminal GlcNAc residue. An additional novel LCO structure has been identified having only a GlcNAc2 backbone. This is to our knowledge the first description of such a minimal LCO structure.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/bi972937r | DOI Listing |
Int Immunopharmacol
January 2025
Department of Urology, Renmin Hospital of Wuhan University, Wuhan 430060 Hubei, China; Institute of Urologic Disease, Renmin Hospital of Wuhan University, Wuhan 430060 Hubei, China. Electronic address:
Renal cell carcinoma (RCC) is one of the most common urological malignancies worldwide, and advanced patients often face challenges with chemotherapy resistance and poor prognosis. Ferroptosis, a novel form of cell death, offers potential therapeutic prospects. In this study, we found that DJ-1 was elevated in kidney renal clear cell carcinoma (KIRC), and this abnormal expression pattern was closely associated with clinical pathological characteristics and worse prognosis.
View Article and Find Full Text PDFCarbohydr Res
March 2025
Department of Molecular Biochemistry, Nagoya University Graduate School of Medicine, 65 Tsurumai-Cho, Showa-Ku, Nagoya, Aichi, 466-8550, Japan; Institute for Glyco-core Research (iGCORE), Nagoya University, Furo-Cho, Chikusa-Ku, Nagoya, Aichi, 464-8601, Japan. Electronic address:
Extracellular O-GlcNAc is a unique post-translational modification that occurs in the epidermal growth factor-like (EGF) domain of the endoplasmic reticulum (ER) lumen. The EGF domain-specific O-GlcNAc transferase (EOGT), catalyzes the transfer of O-GlcNAc to serine/threonine residues of the C-terminal EGF domain. Thus, EOGT-dependent O-GlcNAc modifications are mainly found in selective proteins that are localized in the extracellular spaces or extracellular regions of membrane proteins.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
January 2025
Department of Chemistry and Center for Diagnostics & Therapeutics, Georgia State University, 50 Decatur Street SE, Atlanta, GA 30303, USA.
Poly-N-acetyllactosamine (poly-LacNAc) is ubiquitously expressed on cell surface glycoconjugates, serving as the backbone of complex glycans and an extended scaffold that presents diverse glycan epitopes. The branching of poly-LacNAc, where internal galactose (Gal) residues have β1-6 linked N-acetylglucosamine (GlcNAc) attached, forms the blood group I-antigen, which is closely associated with various physiological and pathological processes including cancer progression. However, the underlying mechanisms remain unclear as many of the I-antigen sequences are undefined and inaccessible.
View Article and Find Full Text PDFCarbohydr Polym
March 2025
Department of Molecular Sciences, Swedish University of Agricultural Sciences, Almas Allé 5, Uppsala 75651, Sweden. Electronic address:
Chitin is the second most abundant biopolymer in nature after cellulose and is composed of N-acetylglucosamine (GlcNAc) connected via β(1 → 4)-glycosidic bonds. Despite its prominence in nature and diverse roles in pharmaceutical and food technological applications, there is still a need to develop methods to study structure and function of chitin and its corresponding oligomers. Efforts have been made to analyse chitin oligomers by NMR spectroscopy, but spectral overlap has prevented any differentiation between the interior residues.
View Article and Find Full Text PDFBiomolecules
November 2024
Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA.
Aberrant protein glycosylation is a hallmark alteration of cancer and is highly associated with cancer progression. Papillary thyroid cancer (PTC) is the most common type of thyroid cancer, but the -glycosylation of its glycoproteins has not been well characterized. In this work, we analyzed multiple freshly prepared PTC specimens along with paired normal tissue obtained from thyroidectomies.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!