Properties of intramolecular proton transfer in carbonic anhydrase III.

Biophys J

Department of Pharmacology and Therapeutics, University of Florida, College of Medicine, Gainesville 32610-0267, USA.

Published: June 1998

We investigated the efficiency of glutamic acid 64 and aspartic acid 64 as proton donors to the zinc-bound hydroxide in a series of site-specific mutants of human carbonic anhydrase III (HCA III). Rate constants for this intramolecular proton transfer, a step in the catalyzed dehydration of bicarbonate, were determined from the proton-transfer-dependent rates of release of H2 18O from the enzyme measured by mass spectrometry. The free energy plots representing these rate constants could be fit by the Marcus rate theory, resulting in an intrinsic barrier for the proton transfer of deltaG0++ = 2.2 +/- 0.5 kcal/mol, and a work function or thermodynamic contribution to the free energy of reaction wr = 10.8 +/- 0.1 kcal/mol. These values are very similar in magnitude to the Marcus parameters describing intramolecular proton transfer from His64 and His67 to the zinc-bound hydroxide in mutants of HCA III. That result and the equivalent efficiency of Glu64 and Asp64 as proton donors in the catalysis by CA III demonstrate a lack of specificity in proton transfer from these sites, which is indirect evidence of a number of proton conduction pathways through different structures of intervening water chains. The dominance of the thermodynamic contribution or work function for all of these proton transfers is consistent with the view that formation and breaking of hydrogen bonds in such water chains is a limiting factor for proton translocation.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1299658PMC
http://dx.doi.org/10.1016/S0006-3495(98)78024-5DOI Listing

Publication Analysis

Top Keywords

proton transfer
20
intramolecular proton
12
proton
10
carbonic anhydrase
8
anhydrase iii
8
proton donors
8
zinc-bound hydroxide
8
hca iii
8
rate constants
8
free energy
8

Similar Publications

Crystalline γ-FeO(OH) dominantly possessing ─OH terminals (𝛾-FeO(OH)), polycrystalline γ-FeO(OH) containing multiple ─O, ─OH, and Fe terminals (𝛾-FeO(OH)), and α-FeO majorly containing ─O surface terminals are used as electrocatalysts to study the effect of surface terminals on electrocatalytic nitrate reduction reaction (eNORR) selectivity and stabilization of reaction intermediates. Brunauer-Emmett-Teller analysis and electrochemically determined surface area suggest a high active surface area of 117.79 m g (ECSA: 0.

View Article and Find Full Text PDF

Background: The imbalance of glutamate (Glu) and gamma-aminobutyric acid (GABA) neurotransmitter system plays a crucial role in the pathogenesis of Alzheimer's disease (AD). Riluzole is a Glu modulator originally approved for amyotrophic lateral sclerosis that has shown potential neuroprotective effects in various neurodegenerative disorders. However, whether riluzole can improve Glu and GABA homeostasis in AD brain and its related mechanism of action remain unknown.

View Article and Find Full Text PDF

Nanoplastics are suspected to pollute every environment on Earth, including very remote areas reached via atmospheric transport. We approached the challenge of measuring environmental nanoplastics by combining high-sensitivity TD-PTR-MS (thermal desorption-proton transfer reaction-mass spectrometry) with trained mountaineers sampling high-altitude glaciers ("citizen science"). Particles < 1 μm were analysed for common polymers (polyethylene, polyethylene terephthalate, polypropylene, polyvinyl chloride, polystyrene and tire wear particles), revealing nanoplastic concentrations ranging 2-80 ng mL at five of 14 sites.

View Article and Find Full Text PDF

A photosynthesis-derived bionic system for sustainable biosynthesis.

Angew Chem Int Ed Engl

January 2025

Wuhan University, College of Chemistry and Molecular Sciences, Luojiashan Street, 430072, Wuhan, CHINA.

"Cell factory" strategy based on microbial anabolism pathways offers an intriguing alternative to relieve the dependence on fossil fuels, which are recognized as the main sources of CO2 emission. Typically, anabolism of intracellular substance in cell factory requires the consumption of sufficient reduced nicotinamide adenine dinucleotide phosphate (NADPH) and adenosine triphosphate (ATP). However, it is of great challenge to modify the natural limited anabolism and to increase the insufficient level of NADPH and ATP to optimum concentrations without causing metabolic imbalance.

View Article and Find Full Text PDF

Dual-mode luminescence and colorimetric sensing for Al and Fe/Fe ions in water using a zinc coordination polymer.

Spectrochim Acta A Mol Biomol Spectrosc

January 2025

Materials Chemistry Research Center, Department of Chemistry, Faculty of Science, Khon Kaen University, Khon Kaen 40002 Thailand. Electronic address:

A zinc(II) coordination polymer, [Zn(Hdhtp)(2,2'-bpy)(HO)] (1), has been utilized as a dual-mode luminescence-colorimetric sensor (Hdhtp = 2,5-dihydroxy terephthalate and 2,2'-bpy = 2,2'-bipyridine). The presence of hydroxyl groups in Hdhtp can promote excited-state intra- and intermolecular proton transfer (ESIPT) phenomena. Therefore, compound 1, which displays high stability in aqueous environments, exhibits a strong green-yellow photoluminescence.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!