Acute effects of ambient ozone on asthmatic, wheezy, and healthy children.

Res Rep Health Eff Inst

University of Southern California, Division of Occupational and Environmental Medicine, School of Medicine, Los Angeles, USA.

Published: May 1998

Southern California children (10 to 12 years old) participated in a two-season study to assess the potential acute respiratory effects of ambient ozone (O3). Asthmatic (n = 49), wheezy (n = 53), and healthy (n = 93) children completed a four-day (Friday through Monday) study protocol, once in spring and again in summer, that included the use of daily activity and symptom diaries, heart rate recording devices, personal O3 samplers, and maximal effort spirometry several times per day. Data from regional monitoring stations were used to establish ambient hourly O3 concentrations. Analyses revealed that the children spent more time outdoors and were more physically active in the spring. Girls spent less time outdoors and were less physically active than boys. Personal O3 samplers correlated poorly with, and generally gave lower readings than, outdoor ambient monitors. Higher personal O3 exposures were associated generally with increased inhaler use, more outdoor time, and more physical activity. Children with asthma spent more time outdoors and were more active in the spring on high-O3 days (measured by personal sampler), and had the most trouble breathing, the most wheezing, and the most inhaler use on these days. Activity pattern data suggested that children with asthma protected themselves by being less physically active outdoors during the summer on high-O3 days. Wheezy children had the most trouble breathing during the summer on low-O3 days (measured by personal sampler). Observed relationships between O3 and pulmonary function were erratic and difficult to reconcile with existing knowledge about the acute respiratory effects of air pollution. We conclude that although asthmatic and wheezy children behave differently from their healthy peers with regard to symptoms and patterns of activity when challenged by ambient ozone, the nature of these changes remains inconsistent and ill-defined.

Download full-text PDF

Source

Publication Analysis

Top Keywords

ambient ozone
12
asthmatic wheezy
12
spent time
12
time outdoors
12
physically active
12
effects ambient
8
ozone asthmatic
8
wheezy healthy
8
children
8
healthy children
8

Similar Publications

Background: Air pollution is a significant environmental risk factor for cardiovascular diseases (CVDs), but its impact on African populations is under-researched due to limited air quality data and health studies.

Objectives: The purpose of this study was to synthesize available research on the effects of air pollution on CVDs outcomes in African populations, identify knowledge gaps, and suggest areas for research and policy intervention.

Methods: A systematic search of PubMed was conducted using terms capturing criteria ambient air pollutants (for example particulate matter, nitrogen dioxide, ozone, and sulfur dioxide) and CVDs and countries in Africa.

View Article and Find Full Text PDF

Assessment of Long-Term Degradation of Adsorbents for Direct Air Capture by Ozonolysis.

J Phys Chem C Nanomater Interfaces

January 2025

Oak Ridge National Laboratory, Oak Ridge, Tennessee 37830, United States.

Porous adsorbents are a promising class of materials for the direct air capture of CO (DAC). Practical implementation of adsorption-based DAC requires adsorbents that can be used for thousands of adsorption-desorption cycles without significant degradation. We examined the potential degradation of adsorbents by a mechanism that appears to have not been considered previously, namely, ozonolysis by trace levels of ozone from ambient air.

View Article and Find Full Text PDF

This study focused on testing the response of the assimilation apparatus of evergreen Pinaceae species to increasing levels of oxidative stress simulated in manipulative experiments. Needles were collected from mature individuals of Pinus mugo, Pinus cembra, Pinus sylvestris, Abies alba, and Picea abies at the foothill (FH) and alpine treeline ecotone (ATE) in the High Tatras (Western Carpathians). The injury index (INX), quantified by the modified electrolyte leakage (EL) method, indicated severe needle damage due to exposure to extremely high levels of O.

View Article and Find Full Text PDF

Impact of air pollution on the progress-free survival of non-small cell lung cancer patients with anti-PD-1/PD-L1 immunotherapy: a cohort study.

Environ Pollut

January 2025

Cancer Research Center, Beijing Chest Hospital, Capital Medical University, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing, China; Department of Medical Oncology, Beijing Chest Hospital, Capital Medical University, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing, China. Electronic address:

Air pollution is a well-established risk factor for lung cancer, but limited evidence exists on its impact on the treatment of lung cancer. The objective of this study was to investigate the impact of key pollutants on the efficacy of PD-1/PD-L1 inhibitor immunotherapy in non-small cell lung cancer (NSCLC) patients, thereby providing clinicians with evidence to potentially enhance the efficacy of PD-1 therapy and inform policy decisions for cancer care. To this end, we conducted a study involving 361 NSCLC patients who received PD-1/PD-L1 inhibitor immunotherapy, examining the correlation between air pollution exposure and progression-free survival (PFS) following immunotherapy treatment.

View Article and Find Full Text PDF

Association of early life co-exposure to ambient PM and O with the offspring's growth within two years of age: A birth cohort study.

Int J Hyg Environ Health

January 2025

Department of Maternal and Child Health, School of Public Health, Sun Yat-sen University, Guangzhou, Guangdong, China; Guangdong Provincial Key Laboratory of Food, Nutrition and Health, School of Public Health, Sun Yat-Sen University, Guangzhou, Guangdong, China. Electronic address:

Background: Previous studies indicated that early life exposure to particulate matter of 2.5 μm or less (PM) could impair children's growth. However, the adverse effects of maternal ozone (O) and its interplay with PM on offspring's growth are unclear.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!